論文の概要: Liability and Insurance for Catastrophic Losses: the Nuclear Power Precedent and Lessons for AI
- arxiv url: http://arxiv.org/abs/2409.06673v1
- Date: Tue, 10 Sep 2024 17:41:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-11 16:39:07.898118
- Title: Liability and Insurance for Catastrophic Losses: the Nuclear Power Precedent and Lessons for AI
- Title(参考訳): 破滅的損失の責任と保険--原子力発電とAIの教訓
- Authors: Cristian Trout,
- Abstract要約: 本稿では、フロンティアAIモデルの開発者は、クリティカルAI発生(CAIO)による損害に対して、限定的で厳格で排他的な第三者責任を課すべきである、と論じる。
CAIO責任の強制保険は、開発者の判断力、勝者の呪いのダイナミクスを克服し、保険会社の準規制能力を活用するために推奨される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As AI systems become more autonomous and capable, experts warn of them potentially causing catastrophic losses. Drawing on the successful precedent set by the nuclear power industry, this paper argues that developers of frontier AI models should be assigned limited, strict, and exclusive third party liability for harms resulting from Critical AI Occurrences (CAIOs) - events that cause or easily could have caused catastrophic losses. Mandatory insurance for CAIO liability is recommended to overcome developers' judgment-proofness, mitigate winner's curse dynamics, and leverage insurers' quasi-regulatory abilities. Based on theoretical arguments and observations from the analogous nuclear power context, insurers are expected to engage in a mix of causal risk-modeling, monitoring, lobbying for stricter regulation, and providing loss prevention guidance in the context of insuring against heavy-tail risks from AI. While not a substitute for regulation, clear liability assignment and mandatory insurance can help efficiently allocate resources to risk-modeling and safe design, facilitating future regulatory efforts.
- Abstract(参考訳): AIシステムがより自律的で有能になるにつれて、専門家はそれらが破滅的な損失を引き起こす可能性があると警告する。
この論文は、原子力産業が設定した成功事例に基づいて、フロンティアAIモデルの開発者は、危機的AI事故(CAIO)による損害に対して限定的で厳格で排他的な第三者責任を負わなければならない、と論じている。
CAIOの責任を負う強制保険は、開発者の判断責任を克服し、勝者の呪いのダイナミクスを緩和し、保険会社の準規制能力を活用するために推奨される。
類似の原子力の文脈からの理論的議論と観察に基づいて、保険会社は、AIからの重細なリスクに対する保険のコンテキストにおいて、因果リスクモデリング、監視、厳格な規制のためのロビー活動、損失防止ガイダンスの混合に関与することが期待されている。
規制の代用ではないが、明確な責任の割り当てと強制保険は、リスクモデリングと安全な設計に資源を効率的に割り当てるのに役立ち、将来の規制努力を促進する。
関連論文リスト
- Engineering Trustworthy AI: A Developer Guide for Empirical Risk Minimization [53.80919781981027]
信頼できるAIのための重要な要件は、経験的リスク最小化のコンポーネントの設計選択に変換できる。
私たちは、AIの信頼性の新たな標準を満たすAIシステムを構築するための実用的なガイダンスを提供したいと思っています。
論文 参考訳(メタデータ) (2024-10-25T07:53:32Z) - A Zero Trust Framework for Realization and Defense Against Generative AI
Attacks in Power Grid [62.91192307098067]
本稿では電力グリッドサプライチェーン(PGSC)のための新しいゼロ信頼フレームワークを提案する。
潜在的なGenAIによる攻撃ベクターの早期発見、テールリスクに基づく安定性の評価、そしてそのような脅威の緩和を容易にする。
実験の結果,ゼロ信頼フレームワークは攻撃ベクトル生成に95.7%の精度,95%安定PGSCに9.61%のリスク尺度,GenAIによる攻撃に対する防御に99%の信頼性が得られた。
論文 参考訳(メタデータ) (2024-03-11T02:47:21Z) - Computing Power and the Governance of Artificial Intelligence [51.967584623262674]
政府や企業は、AIを管理する手段として計算を活用し始めている。
計算ベースのポリシーと技術は、これらの領域を補助する可能性があるが、実装の準備ができている点で大きなバリエーションがある。
プライバシーや経済的影響、権力の中央集権化といった分野において、ガバナンスの計算方法の素早い、あるいは不十分なアプローチは重大なリスクを伴います。
論文 参考訳(メタデータ) (2024-02-13T21:10:21Z) - What's my role? Modelling responsibility for AI-based safety-critical
systems [1.0549609328807565]
開発者や製造業者は、AI-SCSの有害な振る舞いに責任を負うことは困難である。
人間のオペレータは、作成に責任を負わなかったAI-SCS出力の結果に責任を負う"信頼性シンク"になる可能性がある。
本稿では,異なる責任感(ロール,モラル,法的,因果関係)と,それらがAI-SCSの安全性の文脈でどのように適用されるかを検討する。
論文 参考訳(メタデータ) (2023-12-30T13:45:36Z) - A risk-based approach to assessing liability risk for AI-driven harms
considering EU liability directive [0.0]
AIによる害の歴史的事例により、欧州連合はAIの責任指令を制定した。
製品責任主張に競合するプロバイダの今後の能力は、AIシステムの設計、開発、保守において採用される優れたプラクティスに依存します。
本稿では,AIによる外傷に対する責任を検討するためのリスクベースアプローチを提案する。
論文 参考訳(メタデータ) (2023-12-18T15:52:43Z) - The risks of risk-based AI regulation: taking liability seriously [46.90451304069951]
AIの開発と規制は、重要な段階に達したようだ。
一部の専門家は、GPT-4よりも強力なAIシステムのトレーニングに関するモラトリアムを求めている。
本稿では、最も先進的な法的提案である欧州連合のAI法について分析する。
論文 参考訳(メタデータ) (2023-11-03T12:51:37Z) - Managing extreme AI risks amid rapid progress [171.05448842016125]
我々は、大規模社会被害、悪意のある使用、自律型AIシステムに対する人間の制御の不可逆的な喪失を含むリスクについて説明する。
このようなリスクがどのように発生し、どのように管理するかについては、合意の欠如があります。
現在のガバナンスイニシアチブには、誤用や無謀を防ぎ、自律システムにほとんど対処するメカニズムや制度が欠けている。
論文 参考訳(メタデータ) (2023-10-26T17:59:06Z) - Frontier AI Regulation: Managing Emerging Risks to Public Safety [15.85618115026625]
脆弱なAI」モデルは、公共の安全に深刻なリスクをもたらすのに十分な危険能力を持つ可能性がある。
業界の自己規制は重要な第一歩です。
安全基準の最初のセットを提案する。
論文 参考訳(メタデータ) (2023-07-06T17:03:25Z) - AI Liability Insurance With an Example in AI-Powered E-diagnosis System [22.102728605081534]
我々はAIによるE-diagnosisシステムをAI責任保険の研究の例として用いている。
我々は、AI責任保険がコンプライアンス行動のインセンティブを与えるための規制機構として機能し、高品質なAIシステムの証明書として機能することを示した。
論文 参考訳(メタデータ) (2023-06-01T21:03:47Z) - Three lines of defense against risks from AI [0.0]
AIリスク管理の責任者は必ずしも明確ではない。
3つの防衛ライン(3LoD)モデルは、多くの産業でベストプラクティスと考えられている。
私は、AI企業がモデルを実装できる方法を提案する。
論文 参考訳(メタデータ) (2022-12-16T09:33:00Z) - Overcoming Failures of Imagination in AI Infused System Development and
Deployment [71.9309995623067]
NeurIPS 2020は研究論文に「潜在的な悪用と失敗の結果」に関するインパクトステートメントを含むよう要求した。
我々は、害の枠組みは文脈に適応し、潜在的な利害関係者、システム余裕、および最も広い意味での害を評価するための実行可能なプロキシを考える必要があると論じている。
論文 参考訳(メタデータ) (2020-11-26T18:09:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。