Entanglement transfer during quantum frequency conversion in gas-filled hollow-core fibers
- URL: http://arxiv.org/abs/2409.06684v2
- Date: Thu, 10 Apr 2025 08:58:19 GMT
- Title: Entanglement transfer during quantum frequency conversion in gas-filled hollow-core fibers
- Authors: Tasio Gonzalez-Raya, Arturo Mena, Miriam Lazo, Luca Leggio, David Novoa, Mikel Sanz,
- Abstract summary: In this Letter, we employ a quantum Hamiltonian framework to characterize the behavior of entanglement during molecular modulation.<n>Our model predicts a close correlation between the evolution of the average photon numbers and the transfer of entanglement between the interacting parties.<n>Results will contribute to the development of new fiber-based strategies to tackle the challenges associated with the upcoming generation of lightwave quantum technologies.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum transduction is essential for the future hybrid quantum networks, connecting devices across different spectral ranges. In this regard, molecular modulation in hollow-core fibers has proven to be exceptional for efficient and tunable frequency conversion of arbitrary light fields down to the single-photon limit. However, insights on this conversion method for quantum light have remained elusive beyond standard semiclassical models. In this Letter, we employ a quantum Hamiltonian framework to characterize the behavior of entanglement during molecular modulation, while describing the quantum dynamics of both molecules and photons in agreement with recent experiments. In particular, apart from obtaining analytical expressions for the final opto-molecular states, our model predicts a close correlation between the evolution of the average photon numbers and the transfer of entanglement between the interacting parties. These results will contribute to the development of new fiber-based strategies to tackle the challenges associated with the upcoming generation of lightwave quantum technologies.
Related papers
- Multiparticle quantum plasmonics: fundamentals and applications [0.0]
This thesis explores how light interacts with collective charge oscillations at metal-dielectric interfaces, enabling strong confinement and enhanced quantum effects at the nanoscale.
By bridging theory and application, this thesis advances quantum plasmonics and highlights the potential of multiphoton methods in imaging, sensing, and information processing.
arXiv Detail & Related papers (2025-03-28T05:45:37Z) - Light-Matter Hybridization and Entanglement from the First-Principles [3.8065968624597324]
We introduce a variational Squeeze transformation capable of describing anharmonic quantum fluctuations in photon fields.
This formalism enhances the description of light-matter Entanglement, providing a first-principles framework for understanding light-matter hybridization.
arXiv Detail & Related papers (2024-11-22T15:52:50Z) - Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Macroscopic quantum superpositions in superconducting circuits [0.0]
A test current pulse of fixed energy and adjustable length acquires quantum features after interacting with the quantum vacuum of the photon field.
As the length of the pulse grows with respect to the characteristic size of the quantum system, the test pulse undergoes quantum-to-classical transition.
This model differs from previous ones for its simplicity and points towards a new way of creating correlated systems suitable for quantum-based technology.
arXiv Detail & Related papers (2024-06-10T17:29:08Z) - Photon bunching in high-harmonic emission controlled by quantum light [0.0]
Recent theories have laid the groundwork for understanding how quantum-optical properties affect high-field photonics.
We demonstrate a new experimental approach that transduces some properties of a quantum-optical state through a strong-field nonlinearity.
Our results suggest that perturbing strong-field dynamics with quantum-optical states is a viable way to coherently control the generation of these states at short wavelengths.
arXiv Detail & Related papers (2024-04-08T12:53:42Z) - Quantum interface for telecom frequency conversion based on diamond-type
atomic ensembles [0.0]
We study a quantum frequency conversion (QFC) mechanism using diamond-type four-wave mixing (FWM) with rubidium energy levels.
By employing the reduced-density-operator theory, we demonstrate that this diamond-type FWM scheme maintains quantum characteristics with high fidelity.
This work lays the essential groundwork for advancing the scheme in distributed quantum computing and long-distance quantum communication.
arXiv Detail & Related papers (2024-01-18T07:36:30Z) - Amplification of quantum transfer and quantum ratchet [56.47577824219207]
We study a model of amplification of quantum transfer and making it directed which we call the quantum ratchet model.
The ratchet effect is achieved in the quantum control model with dissipation and sink, where the Hamiltonian depends on vibrations in the energy difference synchronized with transitions between energy levels.
Amplitude and frequency of the oscillating vibron together with the dephasing rate are the parameters of the quantum ratchet which determine its efficiency.
arXiv Detail & Related papers (2023-12-31T14:04:43Z) - Finite Pulse-Time Effects in Long-Baseline Quantum Clock Interferometry [45.73541813564926]
We study the interplay of the quantum center-of-mass $-$ that can become delocalized $-$ together with the internal clock transitions.
We show at the example of a Gaussian laser beam that the proposed quantum-clock interferometers are stable against perturbations from varying optical fields.
arXiv Detail & Related papers (2023-09-25T18:00:03Z) - Proof-of-concept Quantum Simulator based on Molecular Spin Qudits [39.28601213393797]
We show the first prototype quantum simulator based on an ensemble of molecular qudits and a radiofrequency broadband spectrometer.
Results represent an important step towards the actual use of molecular spin qudits in quantum technologies.
arXiv Detail & Related papers (2023-09-11T16:33:02Z) - Hyper-entanglement between pulse modes and frequency bins [101.18253437732933]
Hyper-entanglement between two or more photonic degrees of freedom (DOF) can enhance and enable new quantum protocols.
We demonstrate the generation of photon pairs hyper-entangled between pulse modes and frequency bins.
arXiv Detail & Related papers (2023-04-24T15:43:08Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Ultra-long photonic quantum walks via spin-orbit metasurfaces [52.77024349608834]
We report ultra-long photonic quantum walks across several hundred optical modes, obtained by propagating a light beam through very few closely-stacked liquid-crystal metasurfaces.
With this setup we engineer quantum walks up to 320 discrete steps, far beyond state-of-the-art experiments.
arXiv Detail & Related papers (2022-03-28T19:37:08Z) - Generalized Matching Condition for Unity Efficiency Quantum Transduction [2.5496329090462626]
We present a generic formalism for $N$-stage quantum transduction.
We identify effective circuit models and the resulting generalized matching conditions.
We suggest new regimes of non-resonant conversions that might outperform all-resonant ones.
arXiv Detail & Related papers (2022-02-14T19:00:00Z) - Classical-to-quantum transition in multimode nonlinear systems with
strong photon-photon coupling [12.067269037074292]
We investigate the classical-to-quantum transition of such photonic nonlinear systems using the quantum cluster-expansion method.
This work presents a universal tool to study quantum dynamics of multimode systems and explore the nonlinear photonic devices for continuous-variable quantum information processing.
arXiv Detail & Related papers (2021-11-18T07:26:57Z) - Tailoring the degree of entanglement of two coherently coupled quantum
emitters [0.0]
Controlled molecular entanglement can serve as a test-bench to decipher more complex physical or biological mechanisms governed by the coherent coupling.
We implement hyperspectral imaging to identify pairs of coupled organic molecules trapped in a low temperature matrix.
We also demonstrate far-field selective excitation of the long-lived subradiant delocalized states with a laser field tailored in amplitude and phase.
arXiv Detail & Related papers (2021-09-22T08:30:59Z) - Quantum Floquet engineering with an exactly solvable tight-binding chain
in a cavity [0.0]
We provide an exactly solvable model given by a tight-binding chain coupled to a single cavity mode.
We show that perturbative expansions in the light-matter coupling have to be taken with care and can easily lead to a false superradiant phase.
In addition, we derive analytical expressions for the electronic single-particle spectral function and optical conductivity.
arXiv Detail & Related papers (2021-07-26T14:33:20Z) - Rare-Earth Molecular Crystals with Ultra-narrow Optical Linewidths for
Photonic Quantum Technologies [0.0]
We report on europium molecular crystals that exhibit linewidths in the 10s of kHz range, orders of magnitude narrower than other molecular centers.
Results illustrate the utility of rare-earth molecular crystals as a new platform for photonic quantum technologies.
arXiv Detail & Related papers (2021-05-14T22:19:59Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - Spectrally reconfigurable quantum emitters enabled by optimized fast
modulation [42.39394379814941]
Spectral control in solid state platforms such as color centers, rare earth ions, and quantum dots is attractive for realizing such applications on-chip.
We propose the use of frequency-modulated optical transitions for spectral engineering of single photon emission.
Our results suggest that frequency modulation is a powerful technique for the generation of new light states with unprecedented control over the spectral and temporal properties of single photons.
arXiv Detail & Related papers (2020-03-27T18:24:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.