論文の概要: You Have Thirteen Hours in Which to Solve the Labyrinth: Enhancing AI Game Masters with Function Calling
- arxiv url: http://arxiv.org/abs/2409.06949v1
- Date: Wed, 11 Sep 2024 02:03:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-12 15:57:17.711832
- Title: You Have Thirteen Hours in Which to Solve the Labyrinth: Enhancing AI Game Masters with Function Calling
- Title(参考訳): ラビリンスを解くための13時間 - 関数呼び出しによるAIゲームマスタの強化
- Authors: Jaewoo Song, Andrew Zhu, Chris Callison-Burch,
- Abstract要約: 本稿では,テーブルトップロールプレイングゲーム "Jim Henson's Labyrinth: The Adventure Game" のコンテキストにおける関数呼び出しを活用することで,AIゲームマスタを強化する新たなアプローチを提案する。
本手法は,AIゲームマスタの物語的品質と状態更新の整合性の向上を示す関数を通じてゲーム固有の制御を統合することを含む。
- 参考スコア(独自算出の注目度): 35.721053667746716
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Developing a consistent and reliable AI game master for text-based games is a challenging task due to the limitations of large language models (LLMs) and the complexity of the game master's role. This paper presents a novel approach to enhance AI game masters by leveraging function calling in the context of the table-top role-playing game "Jim Henson's Labyrinth: The Adventure Game." Our methodology involves integrating game-specific controls through functions, which we show improves the narrative quality and state update consistency of the AI game master. The experimental results, based on human evaluations and unit tests, demonstrate the effectiveness of our approach in enhancing gameplay experience and maintaining coherence with the game state. This work contributes to the advancement of game AI and interactive storytelling, offering insights into the design of more engaging and consistent AI-driven game masters.
- Abstract(参考訳): テキストベースのゲームのための一貫性があり信頼性の高いAIゲームマスタの開発は、大きな言語モデル(LLM)の制限とゲームマスタの役割の複雑さのために難しい課題である。
本稿では,テーブルトップロールプレイングゲーム "Jim Henson's Labyrinth: The Adventure Game" のコンテキストにおいて,関数呼び出しを活用することで,AIゲームマスタを強化する新たなアプローチを提案する。
本手法は,AIゲームマスタの物語的品質と状態更新の整合性の向上を示す関数を通じてゲーム固有の制御を統合することを含む。
実験結果は,人間の評価と単体テストに基づいて,ゲームプレイ体験の向上とゲーム状態とのコヒーレンス維持におけるアプローチの有効性を実証した。
この研究は、ゲームAIとインタラクティブなストーリーテリングの進歩に貢献し、より魅力的で一貫性のあるAI駆動型ゲームマスターの設計に関する洞察を提供する。
関連論文リスト
- Instruction-Driven Game Engine: A Poker Case Study [53.689520884467065]
IDGEプロジェクトは、大規模言語モデルで自由形式のゲーム記述を追従し、ゲームプレイプロセスを生成することにより、ゲーム開発を民主化することを目的としている。
我々は、複雑なシナリオへの露出を徐々に増大させるカリキュラム方式でIDGEを訓練する。
我々の最初の進歩はポーカーのIDGEの開発であり、これは幅広いポーカーの変種をサポートするだけでなく、自然言語入力を通じて高度に個別化された新しいポーカーゲームを可能にする。
論文 参考訳(メタデータ) (2024-10-17T11:16:27Z) - A Dialogue Game for Eliciting Balanced Collaboration [64.61707514432533]
本稿では、プレイヤーがゴール状態自体を交渉しなければならない2Dオブジェクト配置ゲームを提案する。
我々は,人間プレイヤーが様々な役割を担っていることを実証的に示し,バランスの取れた協調によってタスクのパフォーマンスが向上することを示した。
論文 参考訳(メタデータ) (2024-06-12T13:35:10Z) - Reinforcement Learning for High-Level Strategic Control in Tower Defense Games [47.618236610219554]
戦略ゲームにおいて、ゲームデザインの最も重要な側面の1つは、プレイヤーにとっての挑戦の感覚を維持することである。
従来のスクリプティング手法と強化学習を組み合わせた自動手法を提案する。
その結果、強化学習のような学習アプローチとスクリプトAIを組み合わせることで、AIのみを使用するよりも高性能で堅牢なエージェントが生まれることが示された。
論文 参考訳(メタデータ) (2024-06-12T08:06:31Z) - Mastering the Game of Guandan with Deep Reinforcement Learning and
Behavior Regulating [16.718186690675164]
我々は,グアンダンのゲームをマスターするAIエージェントのためのフレームワークGuanZeroを提案する。
本論文の主な貢献は、注意深く設計されたニューラルネットワーク符号化方式によるエージェントの動作の制御である。
論文 参考訳(メタデータ) (2024-02-21T07:26:06Z) - DanZero+: Dominating the GuanDan Game through Reinforcement Learning [95.90682269990705]
我々は、GuanDanという、非常に複雑で人気のあるカードゲームのためのAIプログラムを開発した。
私たちはまず、DanZeroという名のAIプログラムをこのゲームのために提案しました。
AIの能力をさらに強化するために、政策に基づく強化学習アルゴリズムをGuanDanに適用する。
論文 参考訳(メタデータ) (2023-12-05T08:07:32Z) - AI in (and for) Games [0.9920773256693857]
この章では、人工知能(AI)/機械学習(ML)アルゴリズムとデジタルゲームとの関係について概説する。
一方、ai/ml研究者は、人間の感情的活動、プレイヤーの行動に関する大規模かつ内部的なデータセットを生成できる。
一方、ゲームは知的アルゴリズムを利用して、ゲームレベルのテストの自動化、コンテンツの生成、知的でレスポンシブな非プレイヤーキャラクタ(NPC)の開発、プレイヤーの振る舞いの予測と応答を行うことができる。
論文 参考訳(メタデータ) (2021-05-07T08:57:07Z) - Navigating the Landscape of Multiplayer Games [20.483315340460127]
大規模ゲームの応答グラフにネットワーク測度を適用することで,ゲームのランドスケープを創出できることを示す。
本研究は, 標準ゲームから複雑な経験ゲームまで, 訓練されたエージェント同士のパフォーマンスを計測する領域における知見について述べる。
論文 参考訳(メタデータ) (2020-05-04T16:58:17Z) - Exploration Based Language Learning for Text-Based Games [72.30525050367216]
本研究は,テキストベースのコンピュータゲームにおいて,最先端の性能を発揮できる探索・模倣学習型エージェントを提案する。
テキストベースのコンピュータゲームは、自然言語でプレイヤーの世界を記述し、プレイヤーがテキストを使ってゲームと対話することを期待する。
これらのゲームは、言語理解、問題解決、および人工エージェントによる言語生成のためのテストベッドと見なすことができるため、興味がある。
論文 参考訳(メタデータ) (2020-01-24T03:03:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。