論文の概要: Introducing Perturb-ability Score (PS) to Enhance Robustness Against Evasion Adversarial Attacks on ML-NIDS
- arxiv url: http://arxiv.org/abs/2409.07448v1
- Date: Wed, 11 Sep 2024 17:52:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-12 13:41:10.280427
- Title: Introducing Perturb-ability Score (PS) to Enhance Robustness Against Evasion Adversarial Attacks on ML-NIDS
- Title(参考訳): ML-NIDS攻撃に対するロバスト性を高めるパーターブビリティスコア(PS)の導入
- Authors: Mohamed elShehaby, Ashraf Matrawy,
- Abstract要約: 本稿では,ネットワーク侵入検知システム(NIDS)の特徴を識別し,問題空間の攻撃者が容易に操作できる新しいパーターブビリティスコア(PS)を提案する。
ML ベースの NIDS において,PS を用いて非摂動機能のみを選択することで,敵攻撃に対する堅牢性を高めつつ,検出性能を維持できることが実証された。
- 参考スコア(独自算出の注目度): 1.6574413179773757
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: This paper proposes a novel Perturb-ability Score (PS) that can be used to identify Network Intrusion Detection Systems (NIDS) features that can be easily manipulated by attackers in the problem-space. We demonstrate that using PS to select only non-perturb-able features for ML-based NIDS maintains detection performance while enhancing robustness against adversarial attacks.
- Abstract(参考訳): 本稿では,ネットワーク侵入検知システム(NIDS)の特徴を識別し,問題空間の攻撃者が容易に操作できる新しいパーターブビリティスコア(PS)を提案する。
ML ベースの NIDS において,PS を用いて非摂動機能のみを選択することで,敵攻撃に対する堅牢性を高めつつ,検出性能を維持できることが実証された。
関連論文リスト
- Improving Adversarial Robustness in Android Malware Detection by Reducing the Impact of Spurious Correlations [3.7937308360299116]
機械学習(ML)は、Androidのマルウェア検出(AMD)において大きな進歩を見せている。
しかし、現実的な回避攻撃に対するMLのレジリエンスは、AMDにとって大きな障害である。
本研究では,マルウェアサンプルとAEの分布を調整することで,AMDの一般化性を向上させるための領域適応手法を提案する。
論文 参考訳(メタデータ) (2024-08-27T17:01:12Z) - Celtibero: Robust Layered Aggregation for Federated Learning [0.0]
Celtiberoは, 対向操作に対する強靭性を高めるため, 層状アグリゲーションを統合した新しい防御機構である。
セルティベロは、標的外および標的標的の毒殺攻撃において、最小攻撃成功率(ASR)を維持しつつ、常に高い主タスク精度(MTA)を達成することを実証した。
論文 参考訳(メタデータ) (2024-08-26T12:54:00Z) - Jailbreaking as a Reward Misspecification Problem [80.52431374743998]
本稿では,この脆弱性をアライメントプロセス中に不特定性に対処する新たな視点を提案する。
本稿では,報酬の相違の程度を定量化し,その有効性を実証する指標ReGapを紹介する。
ReMissは、報酬ミスの空間で敵のプロンプトを生成する自動レッドチームリングシステムである。
論文 参考訳(メタデータ) (2024-06-20T15:12:27Z) - Subspace Defense: Discarding Adversarial Perturbations by Learning a Subspace for Clean Signals [52.123343364599094]
敵の攻撃は、正常な例に基づいて慎重に摂動を行い、ディープニューラルネットワーク(DNN)を騙す
まず,低次元線形部分空間において,クリーン信号と逆方向の摂動の特徴が冗長であり,重なりが最小であることを示す。
これにより、DNNは、摂動が破棄されている間、クリーン信号の特徴のみが存在する部分空間を学習することができる。
論文 参考訳(メタデータ) (2024-03-24T14:35:44Z) - Towards Robust Semantic Segmentation against Patch-based Attack via Attention Refinement [68.31147013783387]
我々は,アテンション機構がパッチベースの敵攻撃に弱いことを観察した。
本稿では,意味的セグメンテーションモデルの堅牢性を改善するために,ロバスト注意機構(RAM)を提案する。
論文 参考訳(メタデータ) (2024-01-03T13:58:35Z) - Adaptive Attack Detection in Text Classification: Leveraging Space Exploration Features for Text Sentiment Classification [44.99833362998488]
敵のサンプル検出は、特に急速に進化する攻撃に直面して、適応的なサイバー防御において重要な役割を果たす。
本稿では,BERT(Bidirectional Representations from Transformers)のパワーを活用し,空間探索機能(Space Exploration Features)の概念を提案する。
論文 参考訳(メタデータ) (2023-08-29T23:02:26Z) - Adversarial Evasion Attacks Practicality in Networks: Testing the Impact of Dynamic Learning [1.6574413179773757]
敵攻撃は、MLモデルを騙して欠陥予測を生成することを目的としている。
敵攻撃はMLベースのNIDSを妥協する。
本実験は, 対人訓練を伴わない継続的再訓練は, 対人攻撃の有効性を低下させる可能性が示唆された。
論文 参考訳(メタデータ) (2023-06-08T18:32:08Z) - Non-Singular Adversarial Robustness of Neural Networks [58.731070632586594]
小さな入力摂動に対する過敏性のため、アドリヤルロバスト性はニューラルネットワークにとって新たな課題となっている。
我々は,データ入力とモデル重みの共振レンズを用いて,ニューラルネットワークの非特異な対角性の概念を定式化する。
論文 参考訳(メタデータ) (2021-02-23T20:59:30Z) - Measurement-driven Security Analysis of Imperceptible Impersonation
Attacks [54.727945432381716]
本稿では,ディープニューラルネットワークを用いた顔認識システムの実用性について検討する。
皮膚の色,性別,年齢などの要因が,特定の標的に対する攻撃を行う能力に影響を及ぼすことを示す。
また,攻撃者の顔のさまざまなポーズや視点に対して堅牢なユニバーサルアタックを構築する可能性についても検討した。
論文 参考訳(メタデータ) (2020-08-26T19:27:27Z) - Evaluating and Improving Adversarial Robustness of Machine
Learning-Based Network Intrusion Detectors [21.86766733460335]
本研究では,ML ベースの NIDS のロバスト性を評価するため,グレー/ブラックボックスのトラフィック空間攻撃に関する最初の系統的研究を行った。
私たちの仕事は、以下の点で以前のものより優れています。
また,システムロバスト性を改善するために,敵攻撃に対する防御策を提案する。
論文 参考訳(メタデータ) (2020-05-15T13:06:00Z) - Adversarial vs behavioural-based defensive AI with joint, continual and
active learning: automated evaluation of robustness to deception, poisoning
and concept drift [62.997667081978825]
人工知能(AI)の最近の進歩は、サイバーセキュリティのための行動分析(UEBA)に新たな能力をもたらした。
本稿では、検出プロセスを改善し、人間の専門知識を効果的に活用することにより、この攻撃を効果的に軽減するソリューションを提案する。
論文 参考訳(メタデータ) (2020-01-13T13:54:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。