論文の概要: Self-Evolving Depth-Supervised 3D Gaussian Splatting from Rendered Stereo Pairs
- arxiv url: http://arxiv.org/abs/2409.07456v1
- Date: Wed, 11 Sep 2024 17:59:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-12 13:26:57.757403
- Title: Self-Evolving Depth-Supervised 3D Gaussian Splatting from Rendered Stereo Pairs
- Title(参考訳): レンダリングステレオペアによる自己進化深度3次元ガウススプレイティング
- Authors: Sadra Safadoust, Fabio Tosi, Fatma Güney, Matteo Poggi,
- Abstract要約: 3D Gaussian Splatting (GS) は、基礎となる3Dシーンの形状を正確に表現するのにかなり苦労している。
この制限に対処し、最適化プロセス全体を通して深度事前の統合を包括的に分析する。
この後者は、容易に利用できるステレオネットワークからの奥行きを動的に利用し、トレーニング中にGSモデル自身がレンダリングした仮想ステレオペアを処理し、一貫した自己改善を実現する。
- 参考スコア(独自算出の注目度): 27.364205809607302
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 3D Gaussian Splatting (GS) significantly struggles to accurately represent the underlying 3D scene geometry, resulting in inaccuracies and floating artifacts when rendering depth maps. In this paper, we address this limitation, undertaking a comprehensive analysis of the integration of depth priors throughout the optimization process of Gaussian primitives, and present a novel strategy for this purpose. This latter dynamically exploits depth cues from a readily available stereo network, processing virtual stereo pairs rendered by the GS model itself during training and achieving consistent self-improvement of the scene representation. Experimental results on three popular datasets, breaking ground as the first to assess depth accuracy for these models, validate our findings.
- Abstract(参考訳): 3D Gaussian Splatting (GS) は、基礎となる3Dシーンの形状を正確に表現するのにかなり苦労している。
本稿では,この制限に対処し,ガウス原始体の最適化プロセスを通じて奥行き先の統合を包括的に分析し,新しい戦略を提示する。
この後者は、容易に利用できるステレオネットワークからの奥行きを動的に利用し、トレーニング中にGSモデル自身がレンダリングした仮想ステレオペアを処理し、シーン表現の一貫性のある自己改善を実現する。
3つの一般的なデータセットの実験結果から,これらのモデルの深度精度を初めて評価し,その結果を検証した。
関連論文リスト
- SelfSplat: Pose-Free and 3D Prior-Free Generalizable 3D Gaussian Splatting [4.121797302827049]
ポーズフリーで3次元の事前自由な一般化可能な3次元再構成を実現するための新しい3次元ガウススプラッティングモデルであるSelfSplatを提案する。
本モデルでは,これらの課題に対して,自己教師付き深度とポーズ推定手法を効果的に統合することによって対処する。
提案手法の性能を評価するため,RealEstate10K,ACID,DL3DVなどの大規模実世界のデータセットを用いて評価を行った。
論文 参考訳(メタデータ) (2024-11-26T08:01:50Z) - Beyond Gaussians: Fast and High-Fidelity 3D Splatting with Linear Kernels [51.08794269211701]
本稿では,ガウスカーネルを線形カーネルに置き換えて,よりシャープで高精度な結果を得る3Dリニアスティング(DLS)を提案する。
3DLSは、最先端の忠実さと正確さを示し、ベースライン3DGSよりも30%のFPS改善を実現している。
論文 参考訳(メタデータ) (2024-11-19T11:59:54Z) - GPS-Gaussian+: Generalizable Pixel-wise 3D Gaussian Splatting for Real-Time Human-Scene Rendering from Sparse Views [67.34073368933814]
スパースビューカメラ設定下での高解像度画像レンダリングのための一般化可能なガウススプラッティング手法を提案する。
我々は,人間のみのデータや人景データに基づいてガウスパラメータ回帰モジュールをトレーニングし,深度推定モジュールと共同で2次元パラメータマップを3次元空間に引き上げる。
いくつかのデータセットに対する実験により、我々の手法はレンダリング速度を超越しながら最先端の手法より優れていることが示された。
論文 参考訳(メタデータ) (2024-11-18T08:18:44Z) - PF3plat: Pose-Free Feed-Forward 3D Gaussian Splatting [54.7468067660037]
PF3platは、設計選択を検証した包括的なアブレーション研究によってサポートされた、すべてのベンチマークに新しい最先端を設定します。
本フレームワークは,3DGSの高速,スケーラビリティ,高品質な3D再構成とビュー合成機能を活用している。
論文 参考訳(メタデータ) (2024-10-29T15:28:15Z) - DepthSplat: Connecting Gaussian Splatting and Depth [90.06180236292866]
ガウススプラッティングと深さ推定を結合するDepthSplatを提案する。
まず,事前学習した単眼深度特徴を生かして,頑健な多眼深度モデルを提案する。
また,ガウス的スプラッティングは教師なし事前学習の目的として機能することを示す。
論文 参考訳(メタデータ) (2024-10-17T17:59:58Z) - Mode-GS: Monocular Depth Guided Anchored 3D Gaussian Splatting for Robust Ground-View Scene Rendering [47.879695094904015]
そこで本研究では,地上ロボット軌道データセットのための新しいビューレンダリングアルゴリズムであるMode-GSを提案する。
提案手法は,既存の3次元ガウススプラッティングアルゴリズムの限界を克服する目的で,アンカー付きガウススプラッターを用いている。
提案手法は,PSNR,SSIM,LPIPSの計測値に基づいて,自由軌道パターンを持つ地上環境におけるレンダリング性能を向上する。
論文 参考訳(メタデータ) (2024-10-06T23:01:57Z) - RetinaGS: Scalable Training for Dense Scene Rendering with Billion-Scale 3D Gaussians [12.461531097629857]
我々は、適切なレンダリング方程式を用いた3DGSの一般的なモデル並列トレーニング手法であるRetinaGSを設計する。
本手法により,原始的な数を増やすと,視覚的品質が向上する傾向が明らかになる。
また、完全なMatrixCityデータセット上に10億以上のプリミティブを持つ3DGSモデルをトレーニングする最初の試みを実演する。
論文 参考訳(メタデータ) (2024-06-17T17:59:56Z) - Uncertainty-guided Optimal Transport in Depth Supervised Sparse-View 3D Gaussian [49.21866794516328]
3次元ガウシアンスプラッティングは、リアルタイムな新規ビュー合成において顕著な性能を示した。
これまでのアプローチでは、3Dガウスの訓練に奥行き監視を取り入れ、オーバーフィッティングを軽減してきた。
本研究では,3次元ガウスの深度分布を可視化する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-05-30T03:18:30Z) - InFusion: Inpainting 3D Gaussians via Learning Depth Completion from Diffusion Prior [36.23604779569843]
3Dガウスアンは、最近、新しいビュー合成の効率的な表現として現れた。
本研究は、その編集性について、特に塗装作業に焦点を当てて研究する。
2Dインペイントと比較すると、3Dガウスのクルックスは、導入された点のレンダリング関連性を理解することである。
論文 参考訳(メタデータ) (2024-04-17T17:59:53Z) - GS2Mesh: Surface Reconstruction from Gaussian Splatting via Novel Stereo Views [9.175560202201819]
3Dガウススプラッティング(3DGS)はシーンを正確に表現するための効率的なアプローチとして登場した。
本稿では,ノイズの多い3DGS表現とスムーズな3Dメッシュ表現とのギャップを埋めるための新しい手法を提案する。
私たちは、オリジナルのトレーニングポーズに対応するステレオアライメントされたイメージのペアをレンダリングし、ペアをステレオモデルに入力して深度プロファイルを取得し、最後にすべてのプロファイルを融合して単一のメッシュを得る。
論文 参考訳(メタデータ) (2024-04-02T10:13:18Z) - Q-SLAM: Quadric Representations for Monocular SLAM [85.82697759049388]
四角形のレンズを通して体積表現を再現する。
我々は、RGB入力からノイズの深い深さ推定を正すために二次仮定を用いる。
本研究では,新たな二次分割変換器を導入し,二次情報を集約する。
論文 参考訳(メタデータ) (2024-03-12T23:27:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。