論文の概要: SwinGS: Sliding Window Gaussian Splatting for Volumetric Video Streaming with Arbitrary Length
- arxiv url: http://arxiv.org/abs/2409.07759v1
- Date: Thu, 12 Sep 2024 05:33:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-13 17:41:46.056768
- Title: SwinGS: Sliding Window Gaussian Splatting for Volumetric Video Streaming with Arbitrary Length
- Title(参考訳): SwinGS: 任意長のボリュームビデオストリーミングのためのスライディングウィンドウガウシアンスプラッティング
- Authors: Bangya Liu, Suman Banerjee,
- Abstract要約: 本稿では,リアルタイムストリーミング方式でボリュームビデオのトレーニング,配信,レンダリングを行うフレームワークであるSwinGSを紹介する。
SwingGSはPSNRの妥協を無視する以前の研究と比較して伝送コストを83.6%削減することを示した。
また、現代的なブラウザを持つほとんどのデバイス上で、リアルタイムのボリュームビデオ再生を可能にするインタラクティブなWebGLビューアを開発した。
- 参考スコア(独自算出の注目度): 2.4844080708094745
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in 3D Gaussian Splatting (3DGS) have garnered significant attention in computer vision and computer graphics due to its high rendering speed and remarkable quality. While extant research has endeavored to extend the application of 3DGS from static to dynamic scenes, such efforts have been consistently impeded by excessive model sizes, constraints on video duration, and content deviation. These limitations significantly compromise the streamability of dynamic 3D Gaussian models, thereby restricting their utility in downstream applications, including volumetric video, autonomous vehicle, and immersive technologies such as virtual, augmented, and mixed reality. This paper introduces SwinGS, a novel framework for training, delivering, and rendering volumetric video in a real-time streaming fashion. To address the aforementioned challenges and enhance streamability, SwinGS integrates spacetime Gaussian with Markov Chain Monte Carlo (MCMC) to adapt the model to fit various 3D scenes across frames, in the meantime employing a sliding window captures Gaussian snapshots for each frame in an accumulative way. We implement a prototype of SwinGS and demonstrate its streamability across various datasets and scenes. Additionally, we develop an interactive WebGL viewer enabling real-time volumetric video playback on most devices with modern browsers, including smartphones and tablets. Experimental results show that SwinGS reduces transmission costs by 83.6% compared to previous work with ignorable compromise in PSNR. Moreover, SwinGS easily scales to long video sequences without compromising quality.
- Abstract(参考訳): 近年の3Dガウススティング(3DGS)の進歩は、高いレンダリング速度と顕著な品質のため、コンピュータビジョンとコンピュータグラフィックスに大きな注目を集めている。
静的なシーンからダイナミックなシーンへの3DGSの適用を拡大する努力が続けられているが、このような取り組みは、過度なモデルサイズ、ビデオの長さの制約、コンテンツ偏差によって一貫して妨げられている。
これらの制限は、ダイナミックな3Dガウスモデルのストリーム性を著しく損なうため、ボリュームビデオ、自動運転車、バーチャル、拡張現実、複合現実のような没入型技術など、下流のアプリケーションでの利用を制限している。
本稿では,リアルタイムストリーミング方式でボリュームビデオのトレーニング,配信,レンダリングを行う新しいフレームワークであるSwinGSを紹介する。
上記の課題に対処し、ストリーム性を向上するため、SwinGSは時空ガウスとMCMCを統合し、フレーム間の様々な3Dシーンに適合するようにモデルを適応させ、一方、スライディングウィンドウを使用して各フレームのガウススナップショットを累積的にキャプチャする。
SwinGSのプロトタイプを実装し、さまざまなデータセットやシーンでストリーム性を示す。
さらに,スマートフォンやタブレットを含むモダンなブラウザを持つほとんどのデバイス上で,リアルタイムのボリュームビデオ再生を可能にするインタラクティブなWebGLビューアを開発した。
実験の結果、SwinGSはPSNRにおいて無視できない妥協を伴う以前の研究と比較して、送信コストを83.6%削減した。
さらに、SwinGSは品質を損なうことなく、簡単に長いビデオシーケンスにスケールできる。
関連論文リスト
- Fast Feedforward 3D Gaussian Splatting Compression [55.149325473447384]
3D Gaussian Splatting (FCGS) は、1つのフィードフォワードパスで3DGS表現を高速に圧縮できる最適化フリーモデルである。
FCGSは圧縮比を20倍以上に向上し、高精細度を維持しながら、ほとんどのシーン毎のSOTA最適化手法を上回ります。
論文 参考訳(メタデータ) (2024-10-10T15:13:08Z) - MotionAura: Generating High-Quality and Motion Consistent Videos using Discrete Diffusion [3.7270979204213446]
ビデオ処理の課題に対処するための4つの重要なコントリビューションを提示する。
まず,3次元逆ベクトル量子化バリエンコエンコオートコーダを紹介する。
次に,テキスト・ビデオ生成フレームワークであるMotionAuraを紹介する。
第3に,スペクトル変換器を用いたデノナイジングネットワークを提案する。
第4に,Sketch Guided Videopaintingのダウンストリームタスクを導入する。
論文 参考訳(メタデータ) (2024-10-10T07:07:56Z) - V^3: Viewing Volumetric Videos on Mobiles via Streamable 2D Dynamic Gaussians [53.614560799043545]
V3 (Viewing Volumetric Videos) は,ダイナミックガウスのストリーミングによる高品質なモバイルレンダリングを実現する,新たなアプローチである。
私たちの重要なイノベーションは、ダイナミックな3DGSを2Dビデオと見なすことで、ハードウェアビデオコーデックの使用を促進することです。
モバイル端末でダイナミックなガウシアンをストリームする最初の手段として、私たちのコンパニオンプレーヤーは、前例のないボリュームビデオ体験をユーザに提供します。
論文 参考訳(メタデータ) (2024-09-20T16:54:27Z) - Robust Dual Gaussian Splatting for Immersive Human-centric Volumetric Videos [44.50599475213118]
我々は、複雑な人間のパフォーマンスをリアルタイムかつ高忠実に再生するための、textitDualGSと呼ばれる新しいアプローチを提案する。
提案手法は最大120倍の圧縮比を実現し,フレームあたり約350KBのストレージを必要とする。
我々は、VRヘッドセット上で写真リアルで自由視点体験を通して、表現の有効性を実証する。
論文 参考訳(メタデータ) (2024-09-12T18:33:13Z) - Compact 3D Gaussian Splatting for Static and Dynamic Radiance Fields [13.729716867839509]
ハイパフォーマンスを維持しつつガウスの数を著しく削減する学習可能なマスク戦略を提案する。
さらに、格子型ニューラルネットワークを用いて、ビュー依存色をコンパクトかつ効果的に表現することを提案する。
我々の研究は、3Dシーン表現のための包括的なフレームワークを提供し、ハイパフォーマンス、高速トレーニング、コンパクト性、リアルタイムレンダリングを実現しています。
論文 参考訳(メタデータ) (2024-08-07T14:56:34Z) - WildGaussians: 3D Gaussian Splatting in the Wild [80.5209105383932]
3DGSによる閉塞や外見の変化に対処する新しいアプローチであるWildGaussiansを紹介した。
我々はWildGaussianが3DGSとNeRFのベースラインを越えながら3DGSのリアルタイムレンダリング速度と一致していることを示す。
論文 参考訳(メタデータ) (2024-07-11T12:41:32Z) - PUP 3D-GS: Principled Uncertainty Pruning for 3D Gaussian Splatting [59.277480452459315]
本稿では,現在のアプローチよりも優れた空間感性プルーニングスコアを提案する。
また,事前学習した任意の3D-GSモデルに適用可能なマルチラウンドプルーファインパイプラインを提案する。
我々のパイプラインは、3D-GSの平均レンダリング速度を2.65$times$で増加させ、より健全なフォアグラウンド情報を保持します。
論文 参考訳(メタデータ) (2024-06-14T17:53:55Z) - WE-GS: An In-the-wild Efficient 3D Gaussian Representation for Unconstrained Photo Collections [8.261637198675151]
制約のない写真コレクションからの新規ビュー合成(NVS)は、コンピュータグラフィックスでは困難である。
写真コレクションからのシーン再構築のための効率的なポイントベース微分可能レンダリングフレームワークを提案する。
提案手法は、新しいビューのレンダリング品質と、高収束・レンダリング速度の外観合成において、既存のアプローチよりも優れている。
論文 参考訳(メタデータ) (2024-06-04T15:17:37Z) - GSTalker: Real-time Audio-Driven Talking Face Generation via Deformable Gaussian Splatting [57.59261043916292]
GStalker(GStalker)は、ガウシアン・スプラッティング(英語版)による3D音声駆動の音声顔生成モデルである。
高速なトレーニングとリアルタイムレンダリング速度で、高忠実度とオーディオリップの同期結果を生成することができる。
論文 参考訳(メタデータ) (2024-04-29T18:28:36Z) - Spec-Gaussian: Anisotropic View-Dependent Appearance for 3D Gaussian Splatting [55.71424195454963]
Spec-Gaussian は球面調和の代わりに異方性球面ガウス場を利用するアプローチである。
実験結果から,本手法はレンダリング品質の面で既存の手法を超越していることが示された。
この改良は、3D GSの適用性を高めて、特異面と異方面の複雑なシナリオを扱う。
論文 参考訳(メタデータ) (2024-02-24T17:22:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。