Estimating Atmospheric Variables from Digital Typhoon Satellite Images via Conditional Denoising Diffusion Models
- URL: http://arxiv.org/abs/2409.07961v3
- Date: Thu, 17 Oct 2024 12:23:54 GMT
- Title: Estimating Atmospheric Variables from Digital Typhoon Satellite Images via Conditional Denoising Diffusion Models
- Authors: Zhangyue Ling, Pritthijit Nath, César Quilodrán-Casas,
- Abstract summary: This study explores the application of diffusion models in the field of typhoons.
The focus of this study is taken to be Taiwan, an area very vulnerable to typhoons.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This study explores the application of diffusion models in the field of typhoons, predicting multiple ERA5 meteorological variables simultaneously from Digital Typhoon satellite images. The focus of this study is taken to be Taiwan, an area very vulnerable to typhoons. By comparing the performance of Conditional Denoising Diffusion Probability Model (CDDPM) with Convolutional Neural Networks (CNN) and Squeeze-and-Excitation Networks (SENet), results suggest that the CDDPM performs best in generating accurate and realistic meteorological data. Specifically, CDDPM achieved a PSNR of 32.807, which is approximately 7.9% higher than CNN and 5.5% higher than SENet. Furthermore, CDDPM recorded an RMSE of 0.032, showing a 11.1% improvement over CNN and 8.6% improvement over SENet. A key application of this research can be for imputation purposes in missing meteorological datasets and generate additional high-quality meteorological data using satellite images. It is hoped that the results of this analysis will enable more robust and detailed forecasting, reducing the impact of severe weather events on vulnerable regions. Code accessible at https://github.com/TammyLing/Typhoon-forecasting.
Related papers
- Data-driven rainfall prediction at a regional scale: a case study with Ghana [4.028179670997471]
State-of-the-art numerical weather prediction (NWP) models struggle to produce skillful rainfall forecasts in tropical regions of Africa.
We develop two U-Net convolutional neural network (CNN) models, to predict 24h rainfall at 12h and 30h lead-time.
We also find that combining our data-driven model with classical NWP further improves forecast accuracy.
arXiv Detail & Related papers (2024-10-17T22:07:53Z) - MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
Downscaling, a crucial task in meteorological forecasting, enables the reconstruction of high-resolution meteorological states for target regions.
Previous downscaling methods lacked tailored designs for meteorology and encountered structural limitations.
We propose a novel model called MambaDS, which enhances the utilization of multivariable correlations and topography information.
arXiv Detail & Related papers (2024-08-20T13:45:49Z) - Generating Fine-Grained Causality in Climate Time Series Data for Forecasting and Anomaly Detection [67.40407388422514]
We design a conceptual fine-grained causal model named TBN Granger Causality.
Second, we propose an end-to-end deep generative model called TacSas, which discovers TBN Granger Causality in a generative manner.
We test TacSas on climate benchmark ERA5 for climate forecasting and the extreme weather benchmark of NOAA for extreme weather alerts.
arXiv Detail & Related papers (2024-08-08T06:47:21Z) - Observation-Guided Meteorological Field Downscaling at Station Scale: A
Benchmark and a New Method [66.80344502790231]
We extend meteorological downscaling to arbitrary scattered station scales and establish a new benchmark and dataset.
Inspired by data assimilation techniques, we integrate observational data into the downscaling process, providing multi-scale observational priors.
Our proposed method outperforms other specially designed baseline models on multiple surface variables.
arXiv Detail & Related papers (2024-01-22T14:02:56Z) - AdaNAS: Adaptively Post-processing with Self-supervised Neural
Architecture Search for Ensemble Rainfall Forecasts [16.723190233704432]
We propose a self-supervised neural architecture search (NAS) method to perform rainfall forecast post-processing and predict rainfall with high accuracy.
In addition, we design a rainfall-aware search space to significantly improve forecasts for high-rainfall areas.
validation experiments have been performed under the cases of emphNone, emphLight, emphModerate, emphHeavy and emphViolent on a large-scale precipitation benchmark named TIGGE.
arXiv Detail & Related papers (2023-12-26T13:23:03Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
State of the art for physical hazard prediction from weather and climate requires expensive km-scale numerical simulations driven by coarser resolution global inputs.
Here, a generative diffusion architecture is explored for downscaling such global inputs to km-scale, as a cost-effective machine learning alternative.
The model is trained to predict 2km data from a regional weather model over Taiwan, conditioned on a 25km global reanalysis.
arXiv Detail & Related papers (2023-09-24T19:57:22Z) - FengWu: Pushing the Skillful Global Medium-range Weather Forecast beyond
10 Days Lead [93.67314652898547]
We present FengWu, an advanced data-driven global medium-range weather forecast system based on Artificial Intelligence (AI)
FengWu is able to accurately reproduce the atmospheric dynamics and predict the future land and atmosphere states at 37 vertical levels on a 0.25deg latitude-longitude resolution.
The results suggest that FengWu can significantly improve the forecast skill and extend the skillful global medium-range weather forecast out to 10.75 days lead.
arXiv Detail & Related papers (2023-04-06T09:16:39Z) - Deep-Learning-Based Precipitation Nowcasting with Ground Weather Station
Data and Radar Data [14.672132394870445]
We propose ASOC, a novel attentive method for effectively exploiting ground-based meteorological observations from multiple weather stations.
ASOC is designed to capture temporal dynamics of the observations and also contextual relationships between them.
We show that such a combination improves the average critical success index (CSI) of predicting heavy (at least 10 mm/hr) and light (at least 1 mm/hr) rainfall events at 1-6 hr lead times by 5.7%.
arXiv Detail & Related papers (2022-10-20T14:59:58Z) - Lidar Light Scattering Augmentation (LISA): Physics-based Simulation of
Adverse Weather Conditions for 3D Object Detection [60.89616629421904]
Lidar-based object detectors are critical parts of the 3D perception pipeline in autonomous navigation systems such as self-driving cars.
They are sensitive to adverse weather conditions such as rain, snow and fog due to reduced signal-to-noise ratio (SNR) and signal-to-background ratio (SBR)
arXiv Detail & Related papers (2021-07-14T21:10:47Z) - Fusion of rain radar images and wind forecasts in a deep learning model
applied to rain nowcasting [0.0]
We train a deep learning model on a fusion of rainfall radar images and wind velocity produced by a weather forecast model.
Our network outperforms by 8% the F1-score calculated for the optical flow on moderate and higher rain events for forecasts at a horizon time of 30 min.
Merging rain and wind data has also proven to stabilize the training process and enabled significant improvement especially on the difficult-to-predict high precipitation rainfalls.
arXiv Detail & Related papers (2020-12-09T12:50:06Z) - A Deep Convolutional Neural Network Model for improving WRF Forecasts [0.19573380763700707]
We train the CNN model with a four-year history (2014-2017) to investigate the patterns in WRF biases.
We then reduce these biases in forecasts for surface wind speed and direction, precipitation, relative humidity, surface pressure, dewpoint temperature, and surface temperature.
The results indicate a noticeable improvement in WRF forecasts in all station locations.
arXiv Detail & Related papers (2020-08-14T17:48:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.