論文の概要: Edge-Wise Graph-Instructed Neural Networks
- arxiv url: http://arxiv.org/abs/2409.08023v1
- Date: Thu, 12 Sep 2024 13:05:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-13 16:29:19.323365
- Title: Edge-Wise Graph-Instructed Neural Networks
- Title(参考訳): エッジワイズグラフ命令型ニューラルネットワーク
- Authors: Francesco Della Santa, Antonio Mastropietro, Sandra Pieraccini, Francesco Vaccarino,
- Abstract要約: グラフ命令GI(Graph-Instructed)層の限界について議論し、新しいエッジワイドGI(EWGI)層を定式化する。
EWGINNは、カオス接続を伴うグラフ構造化入力データよりも、GINNよりも優れているという数値的な証拠を提供する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The problem of multi-task regression over graph nodes has been recently approached through Graph-Instructed Neural Network (GINN), which is a promising architecture belonging to the subset of message-passing graph neural networks. In this work, we discuss the limitations of the Graph-Instructed (GI) layer, and we formalize a novel edge-wise GI (EWGI) layer. We discuss the advantages of the EWGI layer and we provide numerical evidence that EWGINNs perform better than GINNs over graph-structured input data with chaotic connectivity, like the ones inferred from the Erdos-R\'enyi graph.
- Abstract(参考訳): グラフノード上のマルチタスク回帰の問題は、メッセージパスグラフニューラルネットワークのサブセットに属する有望なアーキテクチャであるGraph-Instructed Neural Network (GINN)を通じて最近アプローチされている。
本稿では,グラフ命令GI(Graph-Instructed, Graph-Instructed, Graph-Instructed, GI)層の限界について論じ,新しいエッジワイドGI(EWGI)層を定式化する。
我々は、EWGI層の利点について議論し、EWGINNが、エルドス-R'enyiグラフから推定されるようなカオス接続を持つグラフ構造化入力データに対して、GINNよりも優れた性能を示す数値的な証拠を提供する。
関連論文リスト
- Graphs Unveiled: Graph Neural Networks and Graph Generation [0.0]
本稿では,グラフニューラルネットワーク(GNN)の概要を紹介する。
様々な領域にわたるグラフニューラルネットワークの適用について論じる。
我々は,グラフ生成という,GNNの先進的な分野を提示する。
論文 参考訳(メタデータ) (2024-03-18T14:37:27Z) - DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
グラフニューラルネットワーク(GNN)は、複雑な構造を持つグラフ上での表現学習の堅牢性を示す。
ノードのより包括的な埋め込み表現を得るために、Decoupled Graph Neural Networks (DGNN)と呼ばれる新しいGNNフレームワークが導入された。
複数のグラフベンチマークデータセットを用いて、ノード分類タスクにおけるDGNNの優位性を検証した。
論文 参考訳(メタデータ) (2024-01-28T06:43:13Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
我々は,GNN予測に対する忠実な説明を提供するためにDGREEを提案する。
GNNの情報生成と集約機構を分解することにより、DECREEは入力グラフの特定のコンポーネントのコントリビューションを最終的な予測に追跡することができる。
また,従来の手法で見過ごされるグラフノード間の複雑な相互作用を明らかにするために,サブグラフレベルの解釈アルゴリズムを設計する。
論文 参考訳(メタデータ) (2023-05-22T10:29:52Z) - Gradient Gating for Deep Multi-Rate Learning on Graphs [62.25886489571097]
グラフニューラルネットワーク(GNN)の性能向上のための新しいフレームワークであるグラディエントゲーティング(G$2$)を提案する。
我々のフレームワークは,GNN層の出力を,基盤となるグラフのノード間でのメッセージパッシング情報のマルチレートフローのメカニズムでゲーティングすることに基づいている。
論文 参考訳(メタデータ) (2022-10-02T13:19:48Z) - EEGNN: Edge Enhanced Graph Neural Networks [1.0246596695310175]
そこで本研究では,このような劣化した性能現象の新たな説明法を提案する。
このような単純化は、グラフの構造情報を取得するためにメッセージパッシング層の可能性を減らすことができることを示す。
EEGNNは、提案したディリクレ混合ポアソングラフモデルから抽出した構造情報を用いて、様々なディープメッセージパスGNNの性能を向上させる。
論文 参考訳(メタデータ) (2022-08-12T15:24:55Z) - A Robust Stacking Framework for Training Deep Graph Models with
Multifaceted Node Features [61.92791503017341]
数値ノード特徴とグラフ構造を入力とするグラフニューラルネットワーク(GNN)は,グラフデータを用いた各種教師付き学習タスクにおいて,優れた性能を示した。
IID(non-graph)データをGNNに簡単に組み込むことはできない。
本稿では、グラフ認識の伝播をIDデータに意図した任意のモデルで融合するロバストな積み重ねフレームワークを提案する。
論文 参考訳(メタデータ) (2022-06-16T22:46:33Z) - Learning Graph Structure from Convolutional Mixtures [119.45320143101381]
本稿では、観測されたグラフと潜伏グラフのグラフ畳み込み関係を提案し、グラフ学習タスクをネットワーク逆(デコンボリューション)問題として定式化する。
固有分解に基づくスペクトル法の代わりに、近似勾配反復をアンロール・トランケートして、グラフデコンボリューションネットワーク(GDN)と呼ばれるパラメータ化ニューラルネットワークアーキテクチャに到達させる。
GDNは、教師付き方式でグラフの分布を学習し、損失関数を適応させることでリンク予測やエッジウェイト回帰タスクを実行し、本質的に帰納的である。
論文 参考訳(メタデータ) (2022-05-19T14:08:15Z) - Graph Neural Networks for Graph Drawing [17.983238300054527]
グラフニューラルネットワーク(GND)の開発のための新しいフレームワークを提案する。
GNDは、効率的で複雑な地図を構築するために、ニューラルネットワークに依存している。
このメカニズムは、フィードフォワードニューラルネットワークによって計算された損失関数によって導出可能であることを実証する。
論文 参考訳(メタデータ) (2021-09-21T09:58:02Z) - Increase and Conquer: Training Graph Neural Networks on Growing Graphs [116.03137405192356]
本稿では,このグラフからBernoulliをサンプリングしたグラフ上でGNNをトレーニングすることで,WNN(Graphon Neural Network)を学習する問題を考察する。
これらの結果から着想を得た大規模グラフ上でGNNを学習するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-06-07T15:05:59Z) - Brain Graph Super-Resolution Using Adversarial Graph Neural Network with
Application to Functional Brain Connectivity [0.0]
ハイレゾリューション(HR)脳グラフの自動生成を試みる,世界初のディープグラフスーパーレゾリューション(GSR)フレームワークを提案する。
提案されたAGSR-Netフレームワークは、低解像度から高分解能機能脳グラフを予測するための変種を上回った。
論文 参考訳(メタデータ) (2021-05-02T09:09:56Z) - Geom-GCN: Geometric Graph Convolutional Networks [15.783571061254847]
本稿では,この2つの弱点を克服するために,グラフニューラルネットワークのための新しい幾何集約手法を提案する。
提案したアグリゲーションスキームは置換不変であり、ノード埋め込み、構造近傍、二レベルアグリゲーションという3つのモジュールから構成される。
また,このスキームをGeom-GCNと呼ばれるグラフ畳み込みネットワークに実装し,グラフ上でトランスダクティブ学習を行う。
論文 参考訳(メタデータ) (2020-02-13T00:03:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。