論文の概要: Towards Quantifying and Reducing Language Mismatch Effects in Cross-Lingual Speech Anti-Spoofing
- arxiv url: http://arxiv.org/abs/2409.08346v1
- Date: Thu, 12 Sep 2024 18:18:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-16 18:37:11.447378
- Title: Towards Quantifying and Reducing Language Mismatch Effects in Cross-Lingual Speech Anti-Spoofing
- Title(参考訳): 言語ミスマッチの効果の定量化と低減に向けて
- Authors: Tianchi Liu, Ivan Kukanov, Zihan Pan, Qiongqiong Wang, Hardik B. Sailor, Kong Aik Lee,
- Abstract要約: 既存のアンチスプーフィングデータセットは主に英語で書かれている。
多言語データセットの取得の高コストは、トレーニング言語に依存しないモデルを妨げる。
我々は、TS(ACCENT)によるアクセントベースのデータ拡張という革新的なアプローチを提案する。
- 参考スコア(独自算出の注目度): 21.214330523348046
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The effects of language mismatch impact speech anti-spoofing systems, while investigations and quantification of these effects remain limited. Existing anti-spoofing datasets are mainly in English, and the high cost of acquiring multilingual datasets hinders training language-independent models. We initiate this work by evaluating top-performing speech anti-spoofing systems that are trained on English data but tested on other languages, observing notable performance declines. We propose an innovative approach - Accent-based data expansion via TTS (ACCENT), which introduces diverse linguistic knowledge to monolingual-trained models, improving their cross-lingual capabilities. We conduct experiments on a large-scale dataset consisting of over 3 million samples, including 1.8 million training samples and nearly 1.2 million testing samples across 12 languages. The language mismatch effects are preliminarily quantified and remarkably reduced over 15% by applying the proposed ACCENT. This easily implementable method shows promise for multilingual and low-resource language scenarios.
- Abstract(参考訳): 言語ミスマッチの効果は音声の反偽造システムに影響を及ぼすが、これらの効果の調査と定量化は依然として限られている。
既存のアンチスプーフィングデータセットは主に英語であり、多言語データセットを取得するコストが高いことは、言語に依存しないトレーニングモデルを妨げる。
本研究は、英語データに基づいて訓練されるが、他の言語でテストされる最高の音声合成防止システムを評価し、顕著な性能低下を観察することによって開始する。
我々は、モノリンガル学習モデルに多様な言語知識を導入し、それらの言語間能力を改善した、アクセントベースのデータ拡張(ACCENT)を提案する。
私たちは、12言語にわたる180万のトレーニングサンプルと120万近いテストサンプルを含む、300万以上のサンプルからなる大規模なデータセットで実験を行います。
言語ミスマッチ効果はプリミティブに定量化され、提案したACCENTを適用して15%以上減少する。
この実装が容易なメソッドは、多言語および低リソースの言語シナリオを約束する。
関連論文リスト
- An Initial Investigation of Language Adaptation for TTS Systems under Low-resource Scenarios [76.11409260727459]
本稿では,最近のSSLベースの多言語TSシステムであるZMM-TTSの言語適応性について検討する。
本研究では,事前学習言語と対象言語との音声学的な類似性が,対象言語の適応性能に影響を及ぼすことを示す。
論文 参考訳(メタデータ) (2024-06-13T08:16:52Z) - Zero-shot Cross-lingual Stance Detection via Adversarial Language Adaptation [7.242609314791262]
本稿では,ゼロショット言語間スタンス検出,多言語翻訳拡張BERT (MTAB) に対する新しいアプローチを提案する。
本手法では,ゼロショット性能を向上させるために翻訳拡張を用い,モデルの有効性をさらに向上するために,対角学習と組み合わせる。
提案手法の有効性を実証し,強力なベースラインモデルと改良されたモデルとの比較を行った。
論文 参考訳(メタデータ) (2024-04-22T16:56:43Z) - Vicinal Risk Minimization for Few-Shot Cross-lingual Transfer in Abusive
Language Detection [19.399281609371258]
高リソースから中低リソース言語への言語間変換学習は、励みのよい結果を示している。
我々は、言語間乱用言語検出を改善するために、ドメイン適応のためのデータ拡張と継続事前学習を利用する。
論文 参考訳(メタデータ) (2023-11-03T16:51:07Z) - Evaluating the Effectiveness of Natural Language Inference for Hate
Speech Detection in Languages with Limited Labeled Data [2.064612766965483]
ゼロおよび少数ショット設定で良好に機能する自然言語推論(NLI)モデルは、ヘイトスピーチ検出性能の恩恵を受ける。
対象言語における直接微調整よりも,NLI微調整の性能が向上したことを示す。
論文 参考訳(メタデータ) (2023-06-06T14:40:41Z) - Cross-Lingual Transfer Learning for Phrase Break Prediction with
Multilingual Language Model [13.730152819942445]
言語間変換学習は低リソース言語の性能向上に特に有効である。
このことは、リソース不足言語におけるTSフロントエンドの開発には、言語間転送が安価で効果的であることを示している。
論文 参考訳(メタデータ) (2023-06-05T04:10:04Z) - Language Contamination Explains the Cross-lingual Capabilities of
English Pretrained Models [79.38278330678965]
一般的な英語事前学習コーパスには、かなりの量の非英語テキストが含まれていることが判明した。
これにより、大規模なデータセットで数十億の外国語トークンが生成される。
そして、これらの少数の非英語データでさえ、それらに基づいて訓練されたモデルの言語間移動を促進することを実証する。
論文 参考訳(メタデータ) (2022-04-17T23:56:54Z) - Towards Lifelong Learning of Multilingual Text-To-Speech Synthesis [87.75833205560406]
本研究は,多言語テキスト音声(TTS)システムを学習するための生涯学習手法を提案する。
すべての言語からプールされたデータを必要としないため、ストレージと計算の負担が軽減される。
論文 参考訳(メタデータ) (2021-10-09T07:00:38Z) - Probing Multilingual Language Models for Discourse [0.0]
XLM-RoBERTaファミリーのモデルが常に最高のパフォーマンスを示していることが分かりました。
また, モデル蒸留は, 文表現の言語間移動能力に悪影響を及ぼす可能性が示唆された。
論文 参考訳(メタデータ) (2021-06-09T06:34:21Z) - AmericasNLI: Evaluating Zero-shot Natural Language Understanding of
Pretrained Multilingual Models in Truly Low-resource Languages [75.08199398141744]
我々は、XNLI(Conneau et al)の拡張である AmericasNLI を提示する。
は、アメリカ大陸の10の原住民の言語である。
XLM-Rで実験を行い、複数のゼロショットおよび翻訳ベースのアプローチをテストします。
XLM-Rのゼロショット性能は全10言語で低調であり、平均性能は38.62%である。
論文 参考訳(メタデータ) (2021-04-18T05:32:28Z) - Mixed-Lingual Pre-training for Cross-lingual Summarization [54.4823498438831]
言語間の要約は、ソース言語の記事に対する対象言語の要約を作成することを目的としている。
本稿では,翻訳のような言語間タスクと,マスク付き言語モデルのようなモノリンガルタスクの両方を活用する混合言語事前学習に基づくソリューションを提案する。
本モデルでは,2.82(中国語)と1.15(中国語,英語)のROUGE-1スコアを最先端の結果に対して改善する。
論文 参考訳(メタデータ) (2020-10-18T00:21:53Z) - Knowledge Distillation for Multilingual Unsupervised Neural Machine
Translation [61.88012735215636]
unsupervised neural machine translation (UNMT) は、最近、いくつかの言語対に対して顕著な結果を得た。
UNMTは単一の言語ペア間でのみ翻訳することができ、同時に複数の言語ペアに対して翻訳結果を生成することはできない。
本稿では,1つのエンコーダと1つのデコーダを用いて13言語間を翻訳する簡単な手法を実証的に紹介する。
論文 参考訳(メタデータ) (2020-04-21T17:26:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。