Developing an Algorithm Selector for Green Configuration in Scheduling Problems
- URL: http://arxiv.org/abs/2409.08641v1
- Date: Fri, 13 Sep 2024 08:58:24 GMT
- Title: Developing an Algorithm Selector for Green Configuration in Scheduling Problems
- Authors: Carlos March, Christian Perez, Miguel A. Salido,
- Abstract summary: Job Shop Scheduling Problem (JSP) is central to operations research.
Job Shop Scheduling Problem (JSP) is central to operations research.
- Score: 0.8151943266391491
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The Job Shop Scheduling Problem (JSP) is central to operations research, primarily optimizing energy efficiency due to its profound environmental and economic implications. Efficient scheduling enhances production metrics and mitigates energy consumption, thus effectively balancing productivity and sustainability objectives. Given the intricate and diverse nature of JSP instances, along with the array of algorithms developed to tackle these challenges, an intelligent algorithm selection tool becomes paramount. This paper introduces a framework designed to identify key problem features that characterize its complexity and guide the selection of suitable algorithms. Leveraging machine learning techniques, particularly XGBoost, the framework recommends optimal solvers such as GUROBI, CPLEX, and GECODE for efficient JSP scheduling. GUROBI excels with smaller instances, while GECODE demonstrates robust scalability for complex scenarios. The proposed algorithm selector achieves an accuracy of 84.51\% in recommending the best algorithm for solving new JSP instances, highlighting its efficacy in algorithm selection. By refining feature extraction methodologies, the framework aims to broaden its applicability across diverse JSP scenarios, thereby advancing efficiency and sustainability in manufacturing logistics.
Related papers
- Research on reinforcement learning based warehouse robot navigation algorithm in complex warehouse layout [13.945240113332352]
This paper proposes a new method of Proximal Policy Optimization (PPO) and Dijkstra's algorithm, Proximal policy-Dijkstra (PP-D)
PP-D method realizes efficient strategy learning and real-time decision making through PPO, and uses Dijkstra algorithm to plan the global optimal path.
arXiv Detail & Related papers (2024-11-09T09:44:03Z) - What is Metaheuristics? A Primer for the Epidemiologists [1.2783241540121182]
This paper reviews the basic BAT algorithm and its variants, including their applications in various fields.
As a specific application, we apply the BAT algorithm to a biostatistical estimation problem and show it has some clear advantages over existing algorithms.
arXiv Detail & Related papers (2024-10-26T02:13:00Z) - Deep Reinforcement Learning for Online Optimal Execution Strategies [49.1574468325115]
This paper tackles the challenge of learning non-Markovian optimal execution strategies in dynamic financial markets.
We introduce a novel actor-critic algorithm based on Deep Deterministic Policy Gradient (DDPG)
We show that our algorithm successfully approximates the optimal execution strategy.
arXiv Detail & Related papers (2024-10-17T12:38:08Z) - Federated Conditional Stochastic Optimization [110.513884892319]
Conditional optimization has found in a wide range of machine learning tasks, such as in-variant learning tasks, AUPRC, andAML.
This paper proposes algorithms for distributed federated learning.
arXiv Detail & Related papers (2023-10-04T01:47:37Z) - A Reinforcement Learning Approach for Scheduling Problems With Improved
Generalization Through Order Swapping [0.0]
JSSP falls into the category of NP-hard COP, in which solving the problem through exhaustive search becomes unfeasible.
In recent years, the research towards using DRL to solve COP has gained interest and has shown promising results in terms of solution quality and computational efficiency.
In particular, we employ the PPO algorithm that adopts the policy-gradient paradigm that is found to perform well in the constrained dispatching of jobs.
arXiv Detail & Related papers (2023-02-27T16:45:04Z) - Fast Approximations for Job Shop Scheduling: A Lagrangian Dual Deep
Learning Method [44.4747903763245]
The Jobs shop Scheduling Problem (JSP) is a canonical optimization problem that is routinely solved for a variety of industrial purposes.
The problem is NP-hard and computationally challenging even for medium-sized instances.
This paper explores a deep learning approach to deliver efficient and accurate approximations to the problem.
arXiv Detail & Related papers (2021-10-12T21:15:19Z) - A Two-stage Framework and Reinforcement Learning-based Optimization
Algorithms for Complex Scheduling Problems [54.61091936472494]
We develop a two-stage framework, in which reinforcement learning (RL) and traditional operations research (OR) algorithms are combined together.
The scheduling problem is solved in two stages, including a finite Markov decision process (MDP) and a mixed-integer programming process, respectively.
Results show that the proposed algorithms could stably and efficiently obtain satisfactory scheduling schemes for agile Earth observation satellite scheduling problems.
arXiv Detail & Related papers (2021-03-10T03:16:12Z) - A global-local neighborhood search algorithm and tabu search for
flexible job shop scheduling problem [3.946442574906068]
This work presents a new meta-heuristic algorithm called GLNSA (Global-local neighborhood search algorithm)
The proposed algorithm is complemented with a tabu search that implements a simplified version of the Nopt1 neighborhood.
Experiments carried out show a satisfactory performance of the proposed algorithm, compared with other results published in recent algorithms.
arXiv Detail & Related papers (2020-10-23T23:08:51Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
Security-constrained optimal power flow (SCOPF) is fundamental in power systems.
Modeling of APR within the SCOPF problem results in complex large-scale mixed-integer programs.
This paper proposes a novel approach that combines deep learning and robust optimization techniques.
arXiv Detail & Related papers (2020-07-14T12:38:21Z) - Adaptivity of Stochastic Gradient Methods for Nonconvex Optimization [71.03797261151605]
Adaptivity is an important yet under-studied property in modern optimization theory.
Our algorithm is proved to achieve the best-available convergence for non-PL objectives simultaneously while outperforming existing algorithms for PL objectives.
arXiv Detail & Related papers (2020-02-13T05:42:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.