論文の概要: On the Computation of BD-Rate over a Set of Videos for Fair Assessment of Performance of Learned Video Codecs
- arxiv url: http://arxiv.org/abs/2409.08772v1
- Date: Fri, 13 Sep 2024 12:30:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-16 16:39:02.430722
- Title: On the Computation of BD-Rate over a Set of Videos for Fair Assessment of Performance of Learned Video Codecs
- Title(参考訳): 学習ビデオコーデックの性能評価のためのビデオ集合上のBDレート計算について
- Authors: M. Akin Yilmaz, Onur Keleş, A. Murat Tekalp,
- Abstract要約: Bjontegaard Delta (BD)測度は、異なるコーデック間でのレート歪み(RD)性能の変動を評価し定量化するために広く用いられている。
我々は、学習ビデオ圧縮コミュニティにおける、複数のビデオの平均RD曲線に基づくデータセット平均BD値の計算が、誤解を招く可能性があると主張している。
- 参考スコア(独自算出の注目度): 7.714092783675679
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Bj{\o}ntegaard Delta (BD) measure is widely employed to evaluate and quantify the variations in the rate-distortion(RD) performance across different codecs. Many researchers report the average BD value over multiple videos within a dataset for different codecs. We claim that the current practice in the learned video compression community of computing the average BD value over a dataset based on the average RD curve of multiple videos can lead to misleading conclusions. We show both by analysis of a simplistic case of linear RD curves and experimental results with two recent learned video codecs that averaging RD curves can lead to a single video to disproportionately influence the average BD value especially when the operating bitrate range of different codecs do not exactly match. Instead, we advocate for calculating the BD measure per-video basis, as commonly done by the traditional video compression community, followed by averaging the individual BD values over videos, to provide a fair comparison of learned video codecs. Our experimental results demonstrate that the comparison of two recent learned video codecs is affected by how we evaluate the average BD measure.
- Abstract(参考訳): Bj{\o}ntegaard Delta (BD)測度は、異なるコーデック間でのレート歪み(RD)性能の変動を評価し定量化するために広く用いられている。
多くの研究者が、異なるコーデックのためのデータセット内の複数のビデオの平均BD値を報告している。
我々は、学習ビデオ圧縮コミュニティにおける、複数のビデオの平均RD曲線に基づくデータセット平均BD値の計算が、誤解を招く可能性があると主張している。
線形RD曲線の簡素なケースの解析と、2つの最近の学習ビデオコーデックによる実験結果から、RD曲線を平均化すると、特に異なるコーデックの動作ビットレート範囲が正確に一致しない場合、平均BD値に不均等に影響を及ぼすことができることを示す。
代わりに、従来のビデオ圧縮コミュニティで一般的に行われているように、ビデオ単位のBD尺度を計算し、学習ビデオコーデックを公平に比較するために、動画よりも個々のBD値を平均化することを提唱する。
実験の結果,近年の2つの学習ビデオコーデックの比較は,平均BD値の評価方法に影響されていることがわかった。
関連論文リスト
- Not All Pairs are Equal: Hierarchical Learning for Average-Precision-Oriented Video Retrieval [80.09819072780193]
平均精度(AP)は、関連ビデオのランキングを上位リストで評価する。
最近のビデオ検索手法は、全てのサンプル対を等しく扱うペアワイズ損失を利用する。
論文 参考訳(メタデータ) (2024-07-22T11:52:04Z) - Hierarchical B-frame Video Coding for Long Group of Pictures [42.229439873835254]
本稿では、フレームの長いシーケンスでのトレーニング、レートアロケーション、推論によるコンテンツ適応を組み合わせたランダムアクセスのためのエンドツーエンドの学習ビデオを提案する。
一般的なテスト条件下では、ビデオのクラスによっては、YUV-PSNR BD-Rateの点でVTMに匹敵する結果が得られる。
平均して、VMAFとYUV BD-Ratesの点で、オープンLDとRAのエンドツーエンドソリューションを上回っている。
論文 参考訳(メタデータ) (2024-06-24T11:29:52Z) - Uncertainty-Aware Deep Video Compression with Ensembles [24.245365441718654]
深層アンサンブルによる予測不確かさを効果的に把握できる不確実性対応ビデオ圧縮モデルを提案する。
我々のモデルは1080pのシーケンスに比べて20%以上効率良くビットを節約できる。
論文 参考訳(メタデータ) (2024-03-28T05:44:48Z) - Towards Debiasing Frame Length Bias in Text-Video Retrieval via Causal
Intervention [72.12974259966592]
トリミングビデオクリップのトレーニングセットとテストセットのフレーム長差による時間偏差について,一意かつ体系的に検討した。
Epic-Kitchens-100, YouCook2, MSR-VTTデータセットについて, 因果脱バイアス法を提案し, 広範な実験およびアブレーション研究を行った。
論文 参考訳(メタデータ) (2023-09-17T15:58:27Z) - CONVIQT: Contrastive Video Quality Estimator [63.749184706461826]
知覚ビデオ品質評価(VQA)は、多くのストリーミングおよびビデオ共有プラットフォームにおいて不可欠な要素である。
本稿では,視覚的に関連のある映像品質表現を自己指導的に学習する問題について考察する。
本研究は, 自己教師型学習を用いて, 知覚力による説得力のある表現が得られることを示す。
論文 参考訳(メタデータ) (2022-06-29T15:22:01Z) - Transfer of Representations to Video Label Propagation: Implementation
Factors Matter [31.030799003595522]
特徴抽出とラベル伝搬における重要な実装要因の影響について検討する。
映像ベースの通信手段を静止画像ベースで拡張することで、さらなる性能向上が期待できることを示す。
本研究は, 評価実践の改善と, 時間的対応における今後の研究方向性の報知に役立つことを期待する。
論文 参考訳(メタデータ) (2022-03-10T18:58:22Z) - End-to-End Rate-Distortion Optimized Learned Hierarchical Bi-Directional
Video Compression [10.885590093103344]
学習VCは、非線形変換、運動、エントロピーモデルのエンドツーエンドの速度歪み(R-D)最適化トレーニングを同時に行うことができる。
本稿では,階層型モーションサンプリングとエンドツーエンド最適化の利点を組み合わせた,学習型階層型双方向ビデオ(LHBDC)を提案する。
論文 参考訳(メタデータ) (2021-12-17T14:30:22Z) - Perceptual Learned Video Compression with Recurrent Conditional GAN [158.0726042755]
本稿では, PVC (Perceptual Learned Video Compression) アプローチを提案する。
PLVCは低ビットレートで映像を知覚品質に圧縮することを学ぶ。
ユーザスタディでは、最新の学習ビデオ圧縮手法と比較して、PLVCの優れた知覚性能をさらに検証している。
論文 参考訳(メタデータ) (2021-09-07T13:36:57Z) - Objective video quality metrics application to video codecs comparisons:
choosing the best for subjective quality estimation [101.18253437732933]
品質評価は、ビデオ圧縮アルゴリズムの作成と比較において重要な役割を果たす。
比較のために、異なる標準のビデオコーデックでエンコードされた一連のビデオを使用し、2018年から2021年までの一連のストリームに対して、視覚的品質スコアを収集しました。
論文 参考訳(メタデータ) (2021-07-21T17:18:11Z) - Content Adaptive and Error Propagation Aware Deep Video Compression [110.31693187153084]
本稿では,コンテンツ適応型・誤り伝搬対応型ビデオ圧縮システムを提案する。
本手法では, 複数フレームの圧縮性能を1フレームではなく複数フレームで考慮し, 共同学習手法を用いる。
従来の圧縮システムでは手作りのコーディングモードを使用する代わりに,オンラインエンコーダ更新方式をシステム内に設計する。
論文 参考訳(メタデータ) (2020-03-25T09:04:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。