論文の概要: SimSUM: Simulated Benchmark with Structured and Unstructured Medical Records
- arxiv url: http://arxiv.org/abs/2409.08936v3
- Date: Thu, 10 Jul 2025 07:24:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-11 14:32:07.577534
- Title: SimSUM: Simulated Benchmark with Structured and Unstructured Medical Records
- Title(参考訳): SimSUM: 構造化と非構造化の医療記録を用いたベンチマーク
- Authors: Paloma Rabaey, Stefan Heytens, Thomas Demeester,
- Abstract要約: SimSUMは、シミュレーションされた1万の患者記録のベンチマークデータセットである。
各記録は、呼吸器疾患の領域における患者の遭遇をシミュレートする。
大規模言語モデルに、遭遇を記述した臨床メモを生成するよう促される。
これらの音符には、スパンレベルの症状が言及されている。
- 参考スコア(独自算出の注目度): 7.5348062792
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Clinical information extraction, which involves structuring clinical concepts from unstructured medical text, remains a challenging problem that could benefit from the inclusion of tabular background information available in electronic health records. Existing open-source datasets lack explicit links between structured features and clinical concepts in the text, motivating the need for a new research dataset. We introduce SimSUM, a benchmark dataset of 10,000 simulated patient records that link unstructured clinical notes with structured background variables. Each record simulates a patient encounter in the domain of respiratory diseases and includes tabular data (e.g., symptoms, diagnoses, underlying conditions) generated from a Bayesian network whose structure and parameters are defined by domain experts. A large language model (GPT-4o) is prompted to generate a clinical note describing the encounter, including symptoms and relevant context. These notes are annotated with span-level symptom mentions. We conduct an expert evaluation to assess note quality and run baseline predictive models on both the tabular and textual data. The SimSUM dataset is primarily designed to support research on clinical information extraction in the presence of tabular background variables, which can be linked through domain knowledge to concepts of interest to be extracted from the text (symptoms, in the case of SimSUM). Secondary uses include research on the automation of clinical reasoning over both tabular data and text, causal effect estimation in the presence of tabular and/or textual confounders, and multi-modal synthetic data generation. SimSUM is not intended for training clinical decision support systems or production-grade models, but rather to facilitate reproducible research in a simplified and controlled setting. The dataset is available at https://github.com/prabaey/SimSUM.
- Abstract(参考訳): 臨床情報抽出は、構造化されていない医療用テキストから臨床概念を構造化することを含むが、電子的な健康記録に表の背景情報を含めることの恩恵を受けることは難しい問題である。
既存のオープンソースデータセットには、構造化された特徴とテキストの臨床的概念の間に明確なリンクがなく、新しい研究データセットの必要性を動機付けている。
そこで本研究では,構造化背景変数と非構造化臨床ノートをリンクする1万件の患者記録のベンチマークデータセットであるSimSUMを紹介する。
それぞれの記録は、呼吸器疾患の領域で遭遇した患者をシミュレートし、ドメインの専門家によって構造とパラメータが定義されたベイズネットワークから生成された表型データ(例えば、症状、診断、基礎的な状態)を含む。
大規模言語モデル(GPT-4o)は、症状や関連する文脈を含む遭遇を記述した臨床メモを生成するよう促される。
これらの音符には、スパンレベルの症状が言及されている。
本研究は,音質評価の専門家による評価を行い,表表データとテキストデータの両方のベースライン予測モデルを実行する。
SimSUMデータセットは、テキストから抽出される関心の概念(シンサムの場合の症状)にドメイン知識を通してリンクできる表在背景変数の存在下で臨床情報抽出の研究を支援するために主に設計されている。
二次的用途には、表型データとテキストの両方に対する臨床推論の自動化、表型および/またはテキストの共創者の存在による因果効果の推定、マルチモーダル合成データ生成などが含まれる。
SimSUMは、臨床意思決定支援システムや生産段階のモデルを訓練することではなく、簡易かつ制御された環境で再現可能な研究を促進することを目的としている。
データセットはhttps://github.com/prabaey/SimSUMで公開されている。
関連論文リスト
- An Empirical Study of Validating Synthetic Data for Text-Based Person Retrieval [51.10419281315848]
我々は,テキストベース人検索(TBPR)研究における合成データの可能性を探るため,実証的研究を行った。
本稿では,自動プロンプト構築戦略を導入するクラス間画像生成パイプラインを提案する。
我々は、画像のさらなる編集に生成AIモデルを応用した、クラス内画像拡張パイプラインを開発する。
論文 参考訳(メタデータ) (2025-03-28T06:18:15Z) - SynRL: Aligning Synthetic Clinical Trial Data with Human-preferred Clinical Endpoints Using Reinforcement Learning [23.643984146939573]
患者データ生成装置の性能向上のために強化学習を活用するSynRLを提案する。
提案手法は,生成したデータの品質を評価するためのデータ値批判機能と,データジェネレータとユーザニーズを整合させる強化学習を利用する。
論文 参考訳(メタデータ) (2024-11-11T19:19:46Z) - MedSyn: LLM-based Synthetic Medical Text Generation Framework [0.27376226833693]
MedSynは,大規模言語モデルと医療知識グラフを統合する新しい医用テキスト生成フレームワークである。
我々は,MKGを用いて先行医療情報を抽出し,GPT-4および微調整LLaMAモデルを用いた合成臨床ノートを生成する。
本研究は, 合成データは, 合成データのない設定と比較して, 重要かつ困難な符号の分類精度を最大17.8%向上させることができることを示唆している。
論文 参考訳(メタデータ) (2024-08-04T15:07:44Z) - Leveraging text data for causal inference using electronic health records [1.4182510510164876]
本稿では,電子健康データによる因果推論を支援するためにテキストデータを活用する統一的なフレームワークを提案する。
従来のマッチング分析にテキストデータを組み込むことで、推定処理効果の妥当性を高めることができることを示す。
これらの手法は、臨床データの二次解析範囲を、構造化ERHデータに制限された領域にまで広げる可能性があると考えている。
論文 参考訳(メタデータ) (2023-06-09T16:06:02Z) - Development and validation of a natural language processing algorithm to
pseudonymize documents in the context of a clinical data warehouse [53.797797404164946]
この研究は、この領域でツールやリソースを共有する際に直面する困難を浮き彫りにしている。
臨床文献のコーパスを12種類に分類した。
私たちは、ディープラーニングモデルと手動ルールの結果をマージして、ハイブリッドシステムを構築します。
論文 参考訳(メタデータ) (2023-03-23T17:17:46Z) - T-Phenotype: Discovering Phenotypes of Predictive Temporal Patterns in
Disease Progression [82.85825388788567]
我々は、ラベル付き時系列データから予測時相パターンの表現型を発見するために、新しい時間的クラスタリング手法T-Phenotypeを開発した。
T-フェノタイプは, 評価ベースラインのすべてに対して, 最良の表現型発見性能を示す。
論文 参考訳(メタデータ) (2023-02-24T13:30:35Z) - Synthcity: facilitating innovative use cases of synthetic data in
different data modalities [86.52703093858631]
Synthcityは、MLフェアネス、プライバシ、拡張における合成データの革新的なユースケースのための、オープンソースのソフトウェアパッケージである。
Synthcityは、実践者に対して、合成データにおける最先端の研究とツールへの単一のアクセスポイントを提供する。
論文 参考訳(メタデータ) (2023-01-18T14:49:54Z) - Importance of Synthesizing High-quality Data for Text-to-SQL Parsing [71.02856634369174]
最先端のテキストから重み付けアルゴリズムは、強化された合成データでトレーニングされた場合、一般的なベンチマークでは改善されなかった。
本稿では,スキーマから重要な関係を取り入れ,強い型付けを課し,スキーマ重み付きカラムサンプリングを行う新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2022-12-17T02:53:21Z) - Generating Realistic Synthetic Relational Data through Graph Variational
Autoencoders [47.89542334125886]
変動型オートエンコーダフレームワークとグラフニューラルネットワークを組み合わせることで,リアルな合成関係データベースを生成する。
結果は、実際のデータベースの構造が結果の合成データセットに正確に保存されていることを示している。
論文 参考訳(メタデータ) (2022-11-30T10:40:44Z) - Evaluation of the Synthetic Electronic Health Records [3.255030588361125]
本研究は、合成データセットのサンプルワイズ評価のための類似性と特異性という2つの指標を概説する。
本研究は,Cystic Fibrosis (CF) 患者の電子的健康記録を合成するために,いくつかの最先端の遺伝子モデルを用いて提案された概念を実証する。
論文 参考訳(メタデータ) (2022-10-16T22:46:08Z) - Medical Scientific Table-to-Text Generation with Human-in-the-Loop under
the Data Sparsity Constraint [11.720364723821993]
効率的なテーブル・ツー・テキスト要約システムは、このデータをレポートにまとめる手作業を大幅に減らすことができる。
しかし、実際には、この問題は、正確で信頼性の高い出力を生成するための最先端の自然言語生成モデルの、データポーカリティ、データポーサリティ、および機能不全によって大きく妨げられている。
本稿では, 自動補正, コピー機構, 合成データ拡張によって強化された新しい2段階アーキテクチャを用いて, テーブル・ツー・テキスト・アプローチを提案し, それらの課題に対処する。
論文 参考訳(メタデータ) (2022-05-24T21:10:57Z) - Synthesising Electronic Health Records: Cystic Fibrosis Patient Group [3.255030588361125]
本稿では,患者電子健康記録を合成する合成データ生成機能について検討する。
本研究では, 患者結果分類のための合成データの有用性を検証し, 不均衡なデータセットを合成データで拡張する際の予測性能の向上を検証した。
論文 参考訳(メタデータ) (2022-01-14T11:35:18Z) - Self-supervised Answer Retrieval on Clinical Notes [68.87777592015402]
本稿では,ドメイン固有パスマッチングのためのトランスフォーマー言語モデルをトレーニングするためのルールベースのセルフスーパービジョンであるCAPRを紹介する。
目的をトランスフォーマーベースの4つのアーキテクチャ、コンテキスト文書ベクトル、ビ-、ポリエンコーダ、クロスエンコーダに適用する。
本稿では,ドメイン固有パスの検索において,CAPRが強いベースラインを上回り,ルールベースおよび人間ラベル付きパスを効果的に一般化することを示す。
論文 参考訳(メタデータ) (2021-08-02T10:42:52Z) - Drug and Disease Interpretation Learning with Biomedical Entity
Representation Transformer [9.152161078854146]
自由形式のテキストにおける概念正規化は、あらゆるテキストマイニングパイプラインにおいて重要なステップです。
微調整BERTアーキテクチャに基づくシンプルで効果的な2段階のニューラルアプローチを提案する。
論文 参考訳(メタデータ) (2021-01-22T20:01:25Z) - Text Mining to Identify and Extract Novel Disease Treatments From
Unstructured Datasets [56.38623317907416]
Google Cloudを使って、NPRラジオ番組のポッドキャストのエピソードを書き起こします。
次に、テキストを体系的に前処理するためのパイプラインを構築します。
我々のモデルは、Omeprazoleが心臓熱傷の治療に役立てることに成功しました。
論文 参考訳(メタデータ) (2020-10-22T19:52:49Z) - Trajectories, bifurcations and pseudotime in large clinical datasets:
applications to myocardial infarction and diabetes data [94.37521840642141]
混合データ型と欠落値を特徴とする大規模臨床データセット分析のための半教師付き方法論を提案する。
この手法は、次元の減少、データの可視化、クラスタリング、特徴の選択と、部分的に順序付けられた観測列における測地距離(擬時)の定量化のタスクを同時に扱うことのできる弾性主グラフの適用に基づいている。
論文 参考訳(メタデータ) (2020-07-07T21:04:55Z) - Knowledge-guided Text Structuring in Clinical Trials [0.38073142980733]
本稿では,知識ベースを自動生成する知識誘導型テキスト構造化フレームワークを提案する。
実験結果から,本手法は全体の高精度化とリコールが可能であることが示唆された。
論文 参考訳(メタデータ) (2019-12-28T01:12:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。