論文の概要: A Bayesian Approach to Clustering via the Proper Bayesian Bootstrap: the Bayesian Bagged Clustering (BBC) algorithm
- arxiv url: http://arxiv.org/abs/2409.08954v1
- Date: Fri, 13 Sep 2024 16:14:54 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-16 15:50:08.019597
- Title: A Bayesian Approach to Clustering via the Proper Bayesian Bootstrap: the Bayesian Bagged Clustering (BBC) algorithm
- Title(参考訳): ベイズ的ブーストラップによるクラスタリングへのベイズ的アプローチ:ベイズ的バッチクラスタリング(BBC)アルゴリズム
- Authors: Federico Maria Quetti, Silvia Figini, Elena ballante,
- Abstract要約: 本稿では,クラスタリング分野における教師なし手法の新たなアプローチを提案する。
ベイジアンブートストラップを用いた既存文献モデルを改良し,ロバスト性や解釈性の観点から結果を改善する手法が提案されている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The paper presents a novel approach for unsupervised techniques in the field of clustering. A new method is proposed to enhance existing literature models using the proper Bayesian bootstrap to improve results in terms of robustness and interpretability. Our approach is organized in two steps: k-means clustering is used for prior elicitation, then proper Bayesian bootstrap is applied as resampling method in an ensemble clustering approach. Results are analyzed introducing measures of uncertainty based on Shannon entropy. The proposal provides clear indication on the optimal number of clusters, as well as a better representation of the clustered data. Empirical results are provided on simulated data showing the methodological and empirical advances obtained.
- Abstract(参考訳): 本稿では,クラスタリング分野における教師なし手法の新たなアプローチを提案する。
ベイジアンブートストラップを用いた既存文献モデルを改良し,ロバスト性や解釈性の観点から結果を改善する手法が提案されている。
提案手法は,k-meansクラスタリングを先取りに使用し,適切なベイズブートストラップをアンサンブルクラスタリング手法で再サンプリングする方法として適用する。
その結果, シャノンエントロピーに基づく不確実性の測定を行った。
この提案は、クラスタの最適な数を示すとともに、クラスタ化されたデータのより良い表現を提供する。
得られた方法論的および経験的進歩を示すシミュレーションデータに実験結果を提供する。
関連論文リスト
- Deep Clustering via Distribution Learning [7.437581715698929]
本稿では,分散学習によるクラスタリングの最適化を導く理論的解析を行う。
本稿では,クラスタリングのためのクラスタリング指向の分布学習手法であるMonte-Carlo Marginalizationを提案する。
提案したDeep Clustering via Distribution Learning (DCDL)は、一般的なデータセットの最先端の手法と比較して有望な結果が得られる。
論文 参考訳(メタデータ) (2024-08-06T19:01:47Z) - GCC: Generative Calibration Clustering [55.44944397168619]
本稿では,特徴学習と拡張をクラスタリングに組み込む新しいGCC法を提案する。
まず,実検体と実検体間の固有関係を識別する識別的特徴アライメント機構を開発する。
第二に、より信頼性の高いクラスタ割り当てを生成するための自己教師付きメトリック学習を設計する。
論文 参考訳(メタデータ) (2024-04-14T01:51:11Z) - Deep Embedding Clustering Driven by Sample Stability [16.53706617383543]
サンプル安定性(DECS)により駆動されるディープ埋め込みクラスタリングアルゴリズムを提案する。
具体的には、まずオートエンコーダで初期特徴空間を構築し、次にサンプル安定性に制約されたクラスタ指向の埋め込み機能を学ぶ。
5つのデータセットに対する実験結果から,提案手法は最先端のクラスタリング手法と比較して優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2024-01-29T09:19:49Z) - Robust Consensus Clustering and its Applications for Advertising
Forecasting [18.242055675730253]
我々は,専門家の意見に共通する根拠となる真実を見出すことのできる,ロバストなコンセンサスクラスタリングという新しいアルゴリズムを提案する。
提案手法を実世界の広告キャンペーンセグメンテーションと予測タスクに適用する。
論文 参考訳(メタデータ) (2022-12-27T21:49:04Z) - A One-shot Framework for Distributed Clustered Learning in Heterogeneous
Environments [54.172993875654015]
異種環境における分散学習のためのコミュニケーション効率化手法のファミリーを提案する。
ユーザによるローカル計算に基づくワンショットアプローチと、サーバにおけるクラスタリングベースのアグリゲーションステップは、強力な学習保証を提供する。
厳密な凸問題に対しては,ユーザ毎のデータ点数がしきい値を超える限り,提案手法はサンプルサイズの観点から順序最適平均二乗誤差率を達成する。
論文 参考訳(メタデータ) (2022-09-22T09:04:10Z) - Bregman Power k-Means for Clustering Exponential Family Data [11.434503492579477]
我々は、ブレグマン発散の下でのハードクラスタリングに関する古典的な研究のアルゴリズム的進歩を橋渡しする。
ブレグマン発散のエレガントな性質は、単純で透明なアルゴリズムで閉形式更新を維持できる。
シミュレーション実験の徹底的な実証分析と降雨データに関するケーススタディを考察し,提案手法はガウス以外の様々なデータ設定において,既存のピア手法よりも優れていることを示した。
論文 参考訳(メタデータ) (2022-06-22T06:09:54Z) - Self-Evolutionary Clustering [1.662966122370634]
既存のディープクラスタリング手法の多くは、単純な距離比較に基づいており、手作り非線形マッピングによって生成されたターゲット分布に大きく依存している。
新たなモジュール型自己進化クラスタリング(Self-EvoC)フレームワークが構築され,自己管理的な分類によってクラスタリング性能が向上する。
このフレームワークは、サンプルアウトレイラを効率よく識別し、自己監督の助けを借りて、より良い目標分布を生成することができる。
論文 参考訳(メタデータ) (2022-02-21T19:38:18Z) - Gradient Based Clustering [72.15857783681658]
本稿では,クラスタリングの品質を計測するコスト関数の勾配を用いて,距離に基づくクラスタリングの一般的な手法を提案する。
アプローチは反復的な2段階の手順(クラスタ割り当てとクラスタセンターのアップデートの代替)であり、幅広い機能に適用できる。
論文 参考訳(メタデータ) (2022-02-01T19:31:15Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
既存のスケーラブルな階層的クラスタリング手法は、スピードの質を犠牲にする。
我々は、品質を犠牲にせず、数十億のデータポイントまでスケールする、スケーラブルで集約的な階層的クラスタリング法を提案する。
論文 参考訳(メタデータ) (2020-10-22T15:58:35Z) - Kernel learning approaches for summarising and combining posterior
similarity matrices [68.8204255655161]
我々は,ベイズクラスタリングモデルに対するMCMCアルゴリズムの出力を要約するための新しいアプローチを提案するために,後部類似性行列(PSM)の概念を構築した。
我々の研究の重要な貢献は、PSMが正の半定値であり、したがって確率的に動機付けられたカーネル行列を定義するのに使用できることである。
論文 参考訳(メタデータ) (2020-09-27T14:16:14Z) - Clustering Binary Data by Application of Combinatorial Optimization
Heuristics [52.77024349608834]
本稿では,2値データのクラスタリング手法について検討し,まず,クラスタのコンパクトさを計測するアグリゲーション基準を定義した。
近隣地域と人口動態最適化メタヒューリスティックスを用いた5つの新しいオリジナル手法が導入された。
準モンテカルロ実験によって生成された16のデータテーブルから、L1の相似性と階層的クラスタリング、k-means(メドイドやPAM)の1つのアグリゲーションの比較を行う。
論文 参考訳(メタデータ) (2020-01-06T23:33:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。