論文の概要: Quantitative Insights into Language Model Usage and Trust in Academia: An Empirical Study
- arxiv url: http://arxiv.org/abs/2409.09186v1
- Date: Fri, 13 Sep 2024 20:45:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-17 21:59:04.702265
- Title: Quantitative Insights into Language Model Usage and Trust in Academia: An Empirical Study
- Title(参考訳): 学業における言語モデル利用と信頼に関する定量的考察--実証的研究
- Authors: Minseok Jung, Aurora Zhang, Junho Lee, Paul Pu Liang,
- Abstract要約: LMの使用範囲、アウトプットに対するユーザの信頼度、および現実世界の開発に優先すべき課題について、量的証拠に顕著なギャップがある。
本研究は,私立学校で125名を対象に調査を行い,前処理後の88点のデータを得た。
定量的分析と質的証拠により,信頼度は有意な変動がみられた。
- 参考スコア(独自算出の注目度): 29.750000639372203
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Language models (LMs) are revolutionizing knowledge retrieval and processing in academia. However, concerns regarding their misuse and erroneous outputs, such as hallucinations and fabrications, are reasons for distrust in LMs within academic communities. Consequently, there is a pressing need to deepen the understanding of how actual practitioners use and trust these models. There is a notable gap in quantitative evidence regarding the extent of LM usage, user trust in their outputs, and issues to prioritize for real-world development. This study addresses these gaps by providing data and analysis of LM usage and trust. Specifically, our study surveyed 125 individuals at a private school and secured 88 data points after pre-processing. Through both quantitative analysis and qualitative evidence, we found a significant variation in trust levels, which are strongly related to usage time and frequency. Additionally, we discover through a polling process that fact-checking is the most critical issue limiting usage. These findings inform several actionable insights: distrust can be overcome by providing exposure to the models, policies should be developed that prioritize fact-checking, and user trust can be enhanced by increasing engagement. By addressing these critical gaps, this research not only adds to the understanding of user experiences and trust in LMs but also informs the development of more effective LMs.
- Abstract(参考訳): 言語モデル(LM)は、学術における知識の検索と処理に革命をもたらしている。
しかし、その誤用や幻覚や製造などの誤ったアウトプットに対する懸念は、学術コミュニティ内でのLMの不信の理由である。
結果として、実際の実践者がどのようにしてこれらのモデルを使用し、信頼するかについての理解を深める必要がある。
LMの使用範囲、アウトプットに対するユーザの信頼度、および現実世界の開発に優先すべき課題について、量的証拠に顕著なギャップがある。
本研究では,LMの利用状況と信頼度に関するデータと分析を提供することにより,これらのギャップに対処する。
具体的には,私立学校で125名を対象に調査を行い,前処理後の88点のデータを得た。
定量的分析と質的証拠により,信頼度は有意な変動がみられた。
さらに、ファクトチェックが使用を制限する最も重要な問題であることをポーリングプロセスを通じて発見する。
これらの結果は、モデルに露出することで不信を克服でき、ファクトチェックを優先するポリシーを開発し、エンゲージメントを高めることでユーザ信頼を高めることができる。
これらの重要なギャップに対処することにより、この研究はユーザー体験の理解とLMへの信頼を高めるだけでなく、より効果的なLMの開発にも寄与する。
関連論文リスト
- To Know or Not To Know? Analyzing Self-Consistency of Large Language Models under Ambiguity [27.10502683001428]
本稿では, 実体型あいまいさに着目し, 不明瞭な実体を刺激した場合の事実知識の適用において, 最先端のLCMの習熟度と一貫性を解析する。
実験の結果、LLMは正しいエンティティの読み取りを選択するのに苦労し、平均精度は85%、未特定のプロンプトで75%と低いことがわかった。
論文 参考訳(メタデータ) (2024-07-24T09:48:48Z) - How Reliable are LLMs as Knowledge Bases? Re-thinking Facutality and Consistency [60.25969380388974]
大規模言語モデル (LLM) は知識ベース (KB) として研究されている。
現在の評価手法は、信頼性の高い性能の他の決定的な基準を見越して、知識の保持に過度に焦点を絞っている。
我々は,事実と一貫性を定量化するための新しい基準と指標を提案し,最終的な信頼性スコアを導いた。
論文 参考訳(メタデータ) (2024-07-18T15:20:18Z) - Building Understandable Messaging for Policy and Evidence Review (BUMPER) with AI [0.3495246564946556]
BUMPER(Building Understandable Messaging for Policy and Evidence Review)において,大規模言語モデル(LLM)を使用するためのフレームワークを導入する。
LLMは多様なメディアの大規模なデータベースを理解し合成するためのインタフェースを提供することができる。
この枠組みは、政策立案者に対する科学的証拠のアクセシビリティと信頼性を促進することができると我々は主張する。
論文 参考訳(メタデータ) (2024-06-27T05:03:03Z) - I don't trust you (anymore)! -- The effect of students' LLM use on Lecturer-Student-Trust in Higher Education [0.0]
Open AIのChatGPTのようなプラットフォームにおける大規模言語モデル(LLM)は、大学生の間で急速に採用されている。
学生によるLLMの使用は、情報と手続きの正義にどのように影響し、チーム信頼と期待されるチームパフォーマンスに影響を与えるか?
本研究は,LLM使用の公平さよりも,学生利用の透明性に重点を置いていることを示唆する。
論文 参考訳(メタデータ) (2024-06-21T05:35:57Z) - CLAMBER: A Benchmark of Identifying and Clarifying Ambiguous Information Needs in Large Language Models [60.59638232596912]
大規模言語モデル(LLM)を評価するベンチマークであるCLAMBERを紹介する。
分類を基盤として12Kの高品質なデータを構築し, 市販のLCMの強度, 弱点, 潜在的なリスクを評価する。
本研究は, あいまいなユーザクエリの特定と明確化において, 現在のLCMの実用性に限界があることを示唆する。
論文 参考訳(メタデータ) (2024-05-20T14:34:01Z) - TrustScore: Reference-Free Evaluation of LLM Response Trustworthiness [58.721012475577716]
大規模言語モデル(LLM)は、様々な領域にまたがる印象的な能力を示しており、その実践的応用が急増している。
本稿では,行動整合性の概念に基づくフレームワークであるTrustScoreを紹介する。
論文 参考訳(メタデータ) (2024-02-19T21:12:14Z) - Best Practices for Text Annotation with Large Language Models [11.421942894219901]
LLM(Large Language Models)は、新しいテキストアノテーションの時代を担っている。
本稿では, 信頼性, 再現性, 倫理的利用に関する包括的基準とベストプラクティスを提案する。
論文 参考訳(メタデータ) (2024-02-05T15:43:50Z) - TrustLLM: Trustworthiness in Large Language Models [446.5640421311468]
本稿では,大規模言語モデル(LLM)における信頼度に関する総合的研究であるTrustLLMを紹介する。
まず、8つの異なる次元にまたがる信頼性の高いLCMの原則を提案する。
これらの原則に基づいて、真理性、安全性、公正性、堅牢性、プライバシ、機械倫理を含む6つの次元にわたるベンチマークを確立します。
論文 参考訳(メタデータ) (2024-01-10T22:07:21Z) - Assessing the Reliability of Large Language Model Knowledge [78.38870272050106]
大規模言語モデル(LLM)は、知識探索タスクにおける高い性能のため、知識ベースとして扱われてきた。
LLMが実際に正しい答えを連続的に生成する能力をどのように評価するか。
LLMの信頼性を直接測定するための新しい指標であるMOdel kNowledge relIabiliTy score (MONITOR)を提案する。
論文 参考訳(メタデータ) (2023-10-15T12:40:30Z) - Survey on Factuality in Large Language Models: Knowledge, Retrieval and
Domain-Specificity [61.54815512469125]
本調査は,大規模言語モデル(LLM)における事実性の重要課題に対処する。
LLMが様々な領域にまたがる応用を見出すにつれ、その出力の信頼性と正確性は重要となる。
論文 参考訳(メタデータ) (2023-10-11T14:18:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。