論文の概要: Automated Lesion Segmentation in Whole-Body PET/CT in a multitracer setting
- arxiv url: http://arxiv.org/abs/2409.09766v1
- Date: Sun, 15 Sep 2024 15:32:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-17 17:30:41.940958
- Title: Automated Lesion Segmentation in Whole-Body PET/CT in a multitracer setting
- Title(参考訳): シングルボディPET/CTにおけるマルチトラセッティングにおける自動病変分割
- Authors: Qiaoyi Xue, Youdan Feng, Jiayi Liu, Tianming Xu, Kaixin Shen, Chuyun Shen, Yuhang Shi,
- Abstract要約: 本研究は,マルチトラックPET画像の自動セグメンテーションワークフローの性能を評価することに焦点を当てた。
これらの知見は、診断や患者固有の治療計画の強化に重要な洞察を与えるものと期待されている。
- 参考スコア(独自算出の注目度): 2.4549652987344546
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study explores a workflow for automated segmentation of lesions in FDG and PSMA PET/CT images. Due to the substantial differences in image characteristics between FDG and PSMA, specialized preprocessing steps are required. Utilizing YOLOv8 for data classification, the FDG and PSMA images are preprocessed separately before feeding them into the segmentation models, aiming to improve lesion segmentation accuracy. The study focuses on evaluating the performance of automated segmentation workflow for multitracer PET images. The findings are expected to provide critical insights for enhancing diagnostic workflows and patient-specific treatment plans. Our code will be open-sourced and available at https://github.com/jiayiliu-pku/AP2024.
- Abstract(参考訳): 本研究はFDGおよびPSMA PET/CT画像における病変の自動分割のためのワークフローについて検討する。
FDGとPSMAのイメージ特性にかなりの違いがあるため、特別な前処理ステップが必要である。
データ分類にYOLOv8を用いると、FDGとPSMAの画像を個別に前処理してセグメント化モデルに投入し、病変分割精度を向上させる。
本研究は,マルチトラックPET画像の自動セグメンテーションワークフローの性能を評価することに焦点を当てた。
これらの知見は、診断ワークフローの強化と患者固有の治療計画に重要な洞察を与えるものと期待されている。
私たちのコードは、https://github.com/jiayiliu-pku/AP2024.comで公開されます。
関連論文リスト
- Semantic Segmentation Based Quality Control of Histopathology Whole Slide Images [2.953447779233234]
We developed a software pipeline for quality control (QC) of histopathology whole slide images (WSIs)。
異なるレベルのぼかし、組織領域、組織折り、ペンマークなど、さまざまな領域を区分する。
TCGAは、28の臓器から11,000以上の病理像を含むWSIデータセットとして最大である。
論文 参考訳(メタデータ) (2024-10-04T10:03:04Z) - Autopet III challenge: Incorporating anatomical knowledge into nnUNet for lesion segmentation in PET/CT [4.376648893167674]
AutoPET III ChallengeはPET/CT画像における腫瘍病変の自動切除の進歩に焦点を当てている。
我々は,PETスキャンの最大強度投影に基づいて,与えられたPET/CTのトレーサを識別する分類器を開発した。
我々の最終提出書は、公開可能なFDGおよびPSMAデータセットに対して76.90%と61.33%のクロスバリデーションDiceスコアを達成している。
論文 参考訳(メタデータ) (2024-09-18T17:16:57Z) - From FDG to PSMA: A Hitchhiker's Guide to Multitracer, Multicenter Lesion Segmentation in PET/CT Imaging [0.9384264274298444]
本稿では,ResEncL アーキテクチャを用いた nnU-Net フレームワークを用いたマルチトラス,マルチセンタの一般化を目的とした AutoPET III チャレンジの解決策を提案する。
主なテクニックは、CT、MR、PETデータセット間での誤調整データ拡張とマルチモーダル事前トレーニングである。
Diceスコアが57.61となったデフォルトのnnU-Netと比較して、Diceスコアが68.40であり、偽陽性(FPvol: 7.82)と偽陰性(FNvol: 10.35)が減少している。
論文 参考訳(メタデータ) (2024-09-14T16:39:17Z) - PMT: Progressive Mean Teacher via Exploring Temporal Consistency for Semi-Supervised Medical Image Segmentation [51.509573838103854]
医用画像セグメンテーションのための半教師付き学習フレームワークであるプログレッシブ平均教師(PMT)を提案する。
我々のPMTは、トレーニングプロセスにおいて、堅牢で多様な特徴を学習することで、高忠実な擬似ラベルを生成する。
CT と MRI の異なる2つのデータセットに対する実験結果から,本手法が最先端の医用画像分割法より優れていることが示された。
論文 参考訳(メタデータ) (2024-09-08T15:02:25Z) - Explanations of Classifiers Enhance Medical Image Segmentation via
End-to-end Pre-training [37.11542605885003]
医用画像セグメンテーションは、ディープニューラルネットワークを用いて、胸部X線写真などの医用画像の異常な構造を特定し、発見することを目的としている。
我々の研究は、よく訓練された分類器から説明を集め、セグメンテーションタスクの擬似ラベルを生成する。
次に、インテグレート・グラディエント(IG)法を用いて、分類器から得られた説明を蒸留し、強化し、大規模診断指向のローカライゼーション・ラベル(DoLL)を生成する。
これらのDLLアノテーション付き画像は、新型コロナウイルス感染症、肺、心臓、鎖骨などの下流のセグメンテーションタスクのために、モデルを微調整する前に事前訓練するために使用される。
論文 参考訳(メタデータ) (2024-01-16T16:18:42Z) - ArSDM: Colonoscopy Images Synthesis with Adaptive Refinement Semantic
Diffusion Models [69.9178140563928]
大腸内視鏡検査は臨床診断や治療に不可欠である。
注釈付きデータの不足は、既存の手法の有効性と一般化を制限する。
本稿では, 下流作業に有用な大腸内視鏡画像を生成するために, 適応Refinement Semantic Diffusion Model (ArSDM)を提案する。
論文 参考訳(メタデータ) (2023-09-03T07:55:46Z) - Self-Supervised Correction Learning for Semi-Supervised Biomedical Image
Segmentation [84.58210297703714]
半教師付きバイオメディカルイメージセグメンテーションのための自己教師付き補正学習パラダイムを提案する。
共有エンコーダと2つの独立デコーダを含むデュアルタスクネットワークを設計する。
異なるタスクのための3つの医用画像分割データセットの実験により,本手法の優れた性能が示された。
論文 参考訳(メタデータ) (2023-01-12T08:19:46Z) - Whole-Body Lesion Segmentation in 18F-FDG PET/CT [11.662584140924725]
提案モデルは, 全身の病変を予測するために, 2D と 3D nnUNET アーキテクチャを基礎として設計されている。
提案手法は, ダイススコア, 偽陽性ボリューム, 偽陰性ボリュームの計測値において, 病変のセグメンテーション性能を計測するAutoPet Challengeの文脈で評価する。
論文 参考訳(メタデータ) (2022-09-16T10:49:53Z) - Prior Knowledge-Guided Attention in Self-Supervised Vision Transformers [79.60022233109397]
本研究では、未ラベル画像データセットにおける一貫した空間的・意味的構造を利用するフレームワークである空間的事前注意(SPAN)を提案する。
SPANは、アテンションマスクを別個のトランスフォーマーヘッドから正規化し、セマンティック領域の様々な先導に従う。
その結果,アテンションマスクは,ドメインに依存しない事前学習から得られるマスクよりも解釈可能であることが判明した。
論文 参考訳(メタデータ) (2022-09-07T02:30:36Z) - PCA: Semi-supervised Segmentation with Patch Confidence Adversarial
Training [52.895952593202054]
医用画像セグメンテーションのためのPatch Confidence Adrial Training (PCA) と呼ばれる半教師付き対向法を提案する。
PCAは各パッチの画素構造とコンテキスト情報を学習し、十分な勾配フィードバックを得る。
本手法は, 医用画像のセグメンテーションにおいて, 最先端の半教師付き手法より優れており, その有効性を示している。
論文 参考訳(メタデータ) (2022-07-24T07:45:47Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
本稿では,幾何学と形状の内在的関係を共同で符号化することで,従来のGANベースの医用画像合成法よりも優れた手法を提案する。
提案手法は,取得手順の異なる画像を有する公開RETOUCHデータセット上で,最先端のセグメンテーション手法より優れている。
論文 参考訳(メタデータ) (2020-03-31T11:50:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。