論文の概要: Universal Topology Refinement for Medical Image Segmentation with Polynomial Feature Synthesis
- arxiv url: http://arxiv.org/abs/2409.09796v1
- Date: Sun, 15 Sep 2024 17:07:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-17 17:20:56.624663
- Title: Universal Topology Refinement for Medical Image Segmentation with Polynomial Feature Synthesis
- Title(参考訳): 多面的特徴合成による医用画像分割のための普遍的トポロジー再構成
- Authors: Liu Li, Hanchun Wang, Matthew Baugh, Qiang Ma, Weitong Zhang, Cheng Ouyang, Daniel Rueckert, Bernhard Kainz,
- Abstract要約: 医用画像分割法は、しばしばトポロジカルな正当性を無視し、下流の多くのタスクでは利用できない。
1つの選択肢は、トポロジ駆動の損失コンポーネントを含む、そのようなモデルを再訓練することである。
本稿では,任意のドメイン固有のセグメンテーションパイプラインと互換性のあるプラグイン・アンド・プレイトポロジ・リファインメント法を提案する。
- 参考スコア(独自算出の注目度): 19.2371330932614
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Although existing medical image segmentation methods provide impressive pixel-wise accuracy, they often neglect topological correctness, making their segmentations unusable for many downstream tasks. One option is to retrain such models whilst including a topology-driven loss component. However, this is computationally expensive and often impractical. A better solution would be to have a versatile plug-and-play topology refinement method that is compatible with any domain-specific segmentation pipeline. Directly training a post-processing model to mitigate topological errors often fails as such models tend to be biased towards the topological errors of a target segmentation network. The diversity of these errors is confined to the information provided by a labelled training set, which is especially problematic for small datasets. Our method solves this problem by training a model-agnostic topology refinement network with synthetic segmentations that cover a wide variety of topological errors. Inspired by the Stone-Weierstrass theorem, we synthesize topology-perturbation masks with randomly sampled coefficients of orthogonal polynomial bases, which ensures a complete and unbiased representation. Practically, we verified the efficiency and effectiveness of our methods as being compatible with multiple families of polynomial bases, and show evidence that our universal plug-and-play topology refinement network outperforms both existing topology-driven learning-based and post-processing methods. We also show that combining our method with learning-based models provides an effortless add-on, which can further improve the performance of existing approaches.
- Abstract(参考訳): 既存の医用画像分割法は、印象的なピクセル単位での精度を提供するが、トポロジカルな正確さを無視することが多く、多くの下流タスクでは利用できない。
1つの選択肢は、トポロジ駆動の損失コンポーネントを含む、そのようなモデルを再訓練することである。
しかし、これは計算コストが高く、しばしば実用的ではない。
より良い解決策は、任意のドメイン固有のセグメンテーションパイプラインと互換性のある、汎用的なプラグアンドプレイトポロジの洗練方法を持つことである。
トポロジカルエラーを軽減するために、直接処理後のモデルをトレーニングすることはしばしば失敗し、そのようなモデルはターゲットセグメンテーションネットワークのトポロジカルエラーに偏りがちである。
これらのエラーの多様性はラベル付きトレーニングセットが提供する情報に限られており、特に小さなデータセットでは問題となる。
本手法は,多種多様なトポロジ的誤りをカバーする合成セグメンテーションを用いて,モデルに依存しないトポロジ改善ネットワークを訓練することにより,この問題を解決する。
ストーン・ワイエルシュトラスの定理に着想を得て、直交多項式基底のランダムなサンプリング係数で位相摂動マスクを合成し、完全かつ偏りのない表現を保証する。
提案手法の効率と有効性は,多項式基底の複数のファミリーと互換性があることを検証し,我々の汎用的なプラグアンドプレイトポロジ改善ネットワークが既存のトポロジ駆動学習法と後処理法の両方より優れていることを示す。
また,本手法を学習ベースモデルと組み合わせることで,既存手法の性能向上に寄与する無力なアドオンを提供することを示す。
関連論文リスト
- Topograph: An efficient Graph-Based Framework for Strictly Topology Preserving Image Segmentation [78.54656076915565]
位相的正しさは多くの画像分割タスクにおいて重要な役割を果たす。
ほとんどのネットワークは、Diceのようなピクセル単位の損失関数を使って、トポロジカルな精度を無視して訓練されている。
トポロジ的に正確な画像セグメンテーションのための新しいグラフベースのフレームワークを提案する。
論文 参考訳(メタデータ) (2024-11-05T16:20:14Z) - Topologically Faithful Multi-class Segmentation in Medical Images [43.6770098513581]
位相的に忠実な多クラスセグメンテーションのための一般損失関数を提案する。
我々はNクラス分割問題をNクラス分割タスクに投射する。
心筋, 細胞, 動脈静脈, およびWillisセグメンテーションの局所的正当性は, 著明に向上する。
論文 参考訳(メタデータ) (2024-03-16T19:11:57Z) - DTU-Net: Learning Topological Similarity for Curvilinear Structure
Segmentation [2.9398911304923447]
本稿では,2つの重み付きU-Netからなる2重デコーダとトポロジ対応ディープニューラルネットワークDTU-Netを提案する。
テクスチャネットは、画像テクスチャ情報を用いて粗い予測を行う。
トポロジネットは、誤りとミスの分割を認識するために訓練された三重項損失を用いることで、粗い予測からトポロジ情報を学習する。
論文 参考訳(メタデータ) (2022-05-23T08:15:26Z) - Topology-Preserving Segmentation Network: A Deep Learning Segmentation
Framework for Connected Component [7.95119530218428]
医用画像では、腎臓や肺などの構造のトポロジーが通常知られている。
イットトポロジ保存セグメンテーションネットワーク(TPSN)をトレーニングし、正確なセグメンテーション結果を与える。
TPSNは、UNetを通して変形マップを生成する変形ベースのモデルである。
本稿では,画像のマルチレベル情報を組み込んだマルチスケールTPSNを開発し,より正確なセグメンテーション結果を生成する。
論文 参考訳(メタデータ) (2022-02-27T09:56:33Z) - Joint Network Topology Inference via Structured Fusion Regularization [70.30364652829164]
結合ネットワークトポロジ推論は、異種グラフ信号から複数のグラフラプラシア行列を学習する標準的な問題を表す。
新規な構造化融合正規化に基づく一般グラフ推定器を提案する。
提案するグラフ推定器は高い計算効率と厳密な理論保証の両方を享受できることを示す。
論文 参考訳(メタデータ) (2021-03-05T04:42:32Z) - Good Classifiers are Abundant in the Interpolating Regime [64.72044662855612]
補間分類器間のテストエラーの完全な分布を正確に計算する手法を開発した。
テストエラーは、最悪の補間モデルのテストエラーから大きく逸脱する、小さな典型的な$varepsilon*$に集中する傾向にある。
以上の結果から,統計的学習理論における通常の解析手法は,実際に観測された優れた一般化性能を捉えるのに十分な粒度にはならない可能性が示唆された。
論文 参考訳(メタデータ) (2020-06-22T21:12:31Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z) - Self-Learning with Rectification Strategy for Human Parsing [73.06197841003048]
擬似ラベルの2つの典型的な誤りを補正する訓練可能なグラフ推論法を提案する。
再構成された特徴は、人体のトポロジー構造を表現する能力が強い。
本手法は、教師付き人間の解析作業において、他の最先端手法よりも優れている。
論文 参考訳(メタデータ) (2020-04-17T03:51:30Z) - Belief Propagation Reloaded: Learning BP-Layers for Labeling Problems [83.98774574197613]
最も単純な推論手法の1つとして、切り詰められた最大積のBelief伝播を取り上げ、それをディープラーニングモデルの適切なコンポーネントにするために必要となるものを加えます。
このBP-Layerは畳み込みニューラルネットワーク(CNN)の最終ブロックまたは中間ブロックとして使用できる
このモデルは様々な密集予測問題に適用可能であり、パラメータ効率が高く、ステレオ、光フロー、セマンティックセグメンテーションにおける堅牢な解を提供する。
論文 参考訳(メタデータ) (2020-03-13T13:11:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。