NARF24: Estimating Articulated Object Structure for Implicit Rendering
- URL: http://arxiv.org/abs/2409.09829v1
- Date: Sun, 15 Sep 2024 19:06:46 GMT
- Title: NARF24: Estimating Articulated Object Structure for Implicit Rendering
- Authors: Stanley Lewis, Tom Gao, Odest Chadwicke Jenkins,
- Abstract summary: We propose a method that learns a common Neural Radiance Field (NeRF) representation across a small number of collected scenes.
This representation is combined with a parts-based image segmentation to produce an implicit space part localization.
- Score: 8.044069980286812
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Articulated objects and their representations pose a difficult problem for robots. These objects require not only representations of geometry and texture, but also of the various connections and joint parameters that make up each articulation. We propose a method that learns a common Neural Radiance Field (NeRF) representation across a small number of collected scenes. This representation is combined with a parts-based image segmentation to produce an implicit space part localization, from which the connectivity and joint parameters of the articulated object can be estimated, thus enabling configuration-conditioned rendering.
Related papers
- SINGAPO: Single Image Controlled Generation of Articulated Parts in Objects [20.978091381109294]
We propose a method to generate articulated objects from a single image.
Our method generates an articulated object that is visually consistent with the input image.
Our experiments show that our method outperforms the state-of-the-art in articulated object creation.
arXiv Detail & Related papers (2024-10-21T20:41:32Z) - ICGNet: A Unified Approach for Instance-Centric Grasping [42.92991092305974]
We introduce an end-to-end architecture for object-centric grasping.
We show the effectiveness of the proposed method by extensively evaluating it against state-of-the-art methods on synthetic datasets.
arXiv Detail & Related papers (2024-01-18T12:41:41Z) - Building Rearticulable Models for Arbitrary 3D Objects from 4D Point
Clouds [28.330364666426345]
We build rearticulable models for arbitrary everyday man-made objects containing an arbitrary number of parts.
Our method identifies the distinct object parts, what parts are connected to what other parts, and the properties of the joints connecting each part pair.
arXiv Detail & Related papers (2023-06-01T17:59:21Z) - Compositional Scene Modeling with Global Object-Centric Representations [44.43366905943199]
Humans can easily identify the same object, even if occlusions exist, by completing the occluded parts based on its canonical image in the memory.
This paper proposes a compositional scene modeling method to infer global representations of canonical images of objects without any supervision.
arXiv Detail & Related papers (2022-11-21T14:36:36Z) - Object Wake-up: 3-D Object Reconstruction, Animation, and in-situ
Rendering from a Single Image [58.69732754597448]
Given a picture of a chair, could we extract the 3-D shape of the chair, animate its plausible articulations and motions, and render in-situ in its original image space?
We devise an automated approach to extract and manipulate articulated objects in single images.
arXiv Detail & Related papers (2021-08-05T16:20:12Z) - Continuous Surface Embeddings [76.86259029442624]
We focus on the task of learning and representing dense correspondences in deformable object categories.
We propose a new, learnable image-based representation of dense correspondences.
We demonstrate that the proposed approach performs on par or better than the state-of-the-art methods for dense pose estimation for humans.
arXiv Detail & Related papers (2020-11-24T22:52:15Z) - Neural Scene Graphs for Dynamic Scenes [57.65413768984925]
We present the first neural rendering method that decomposes dynamic scenes into scene graphs.
We learn implicitly encoded scenes, combined with a jointly learned latent representation to describe objects with a single implicit function.
arXiv Detail & Related papers (2020-11-20T12:37:10Z) - Category Level Object Pose Estimation via Neural Analysis-by-Synthesis [64.14028598360741]
In this paper we combine a gradient-based fitting procedure with a parametric neural image synthesis module.
The image synthesis network is designed to efficiently span the pose configuration space.
We experimentally show that the method can recover orientation of objects with high accuracy from 2D images alone.
arXiv Detail & Related papers (2020-08-18T20:30:47Z) - Object-Centric Multi-View Aggregation [86.94544275235454]
We present an approach for aggregating a sparse set of views of an object in order to compute a semi-implicit 3D representation in the form of a volumetric feature grid.
Key to our approach is an object-centric canonical 3D coordinate system into which views can be lifted, without explicit camera pose estimation.
We show that computing a symmetry-aware mapping from pixels to the canonical coordinate system allows us to better propagate information to unseen regions.
arXiv Detail & Related papers (2020-07-20T17:38:31Z) - Convolutional Occupancy Networks [88.48287716452002]
We propose Convolutional Occupancy Networks, a more flexible implicit representation for detailed reconstruction of objects and 3D scenes.
By combining convolutional encoders with implicit occupancy decoders, our model incorporates inductive biases, enabling structured reasoning in 3D space.
We empirically find that our method enables the fine-grained implicit 3D reconstruction of single objects, scales to large indoor scenes, and generalizes well from synthetic to real data.
arXiv Detail & Related papers (2020-03-10T10:17:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.