Beyond Perceptual Distances: Rethinking Disparity Assessment for Out-of-Distribution Detection with Diffusion Models
- URL: http://arxiv.org/abs/2409.10094v2
- Date: Tue, 19 Nov 2024 02:55:22 GMT
- Title: Beyond Perceptual Distances: Rethinking Disparity Assessment for Out-of-Distribution Detection with Diffusion Models
- Authors: Kun Fang, Qinghua Tao, Zuopeng Yang, Xiaolin Huang, Jie Yang,
- Abstract summary: Out-of-Distribution (OoD) detection aims to justify whether a given sample is from the training distribution of the classifier-under-protection.
DM-based methods bring fresh insights to the field, yet remain under-explored.
Our work has demonstrated state-of-the-art detection performances among DM-based methods in extensive experiments.
- Score: 28.96695036746856
- License:
- Abstract: Out-of-Distribution (OoD) detection aims to justify whether a given sample is from the training distribution of the classifier-under-protection, i.e., In-Distribution (InD), or from OoD. Diffusion Models (DMs) are recently utilized in OoD detection by using the perceptual distances between the given image and its DM generation. DM-based methods bring fresh insights to the field, yet remain under-explored. In this work, we point out two main limitations in DM-based OoD detection methods: (i) the perceptual metrics on the disparities between the given sample and its generation are devised only at human-perceived levels, ignoring the abstract or high-level patterns that help better reflect the intrinsic disparities in distribution; (ii) only the raw image contents are taken to measure the disparities, while other representations, i.e., the features and probabilities from the classifier-under-protection, are easy to access at hand but are ignored. To this end, our proposed detection framework goes beyond the perceptual distances and looks into the deep representations from the classifier-under-protection with our novel metrics devised correspondingly, leading to more informative disparity assessments between InD and OoD. An anomaly-removal strategy is integrated to remove the abnormal OoD information in the generation, further enhancing the distinctiveness of disparities. Our work has demonstrated state-of-the-art detection performances among DM-based methods in extensive experiments.
Related papers
- Unsupervised Model Diagnosis [49.36194740479798]
This paper proposes Unsupervised Model Diagnosis (UMO) to produce semantic counterfactual explanations without any user guidance.
Our approach identifies and visualizes changes in semantics, and then matches these changes to attributes from wide-ranging text sources.
arXiv Detail & Related papers (2024-10-08T17:59:03Z) - Discrepancy-based Diffusion Models for Lesion Detection in Brain MRI [1.8420387715849447]
Diffusion probabilistic models (DPMs) have exhibited significant effectiveness in computer vision tasks.
Their notable performance heavily relies on labelled datasets, which limits their application in medical images.
This paper introduces a novel framework by incorporating distinctive discrepancy features.
arXiv Detail & Related papers (2024-05-08T11:26:49Z) - DPMesh: Exploiting Diffusion Prior for Occluded Human Mesh Recovery [71.6345505427213]
DPMesh is an innovative framework for occluded human mesh recovery.
It capitalizes on the profound diffusion prior about object structure and spatial relationships embedded in a pre-trained text-to-image diffusion model.
arXiv Detail & Related papers (2024-04-01T18:59:13Z) - Hypothesis-Driven Deep Learning for Out of Distribution Detection [0.8191518216608217]
We propose a hypothesis-driven approach to quantify whether a new sample is InD or OoD.
We adapt our method to detect an unseen sample of bacteria to a trained deep learning model, and show that it reveals interpretable differences between InD and OoD latent responses.
arXiv Detail & Related papers (2024-03-21T01:06:47Z) - Adversarial Denoising Diffusion Model for Unsupervised Anomaly Detection [4.936226952764696]
ADDM is based on the Denoising Diffusion Probabilistic Model (DDPM) but complementarily trained by adversarial learning.
We apply ADDM to anomaly detection in unsupervised MRI images.
arXiv Detail & Related papers (2023-12-07T15:51:19Z) - Projection Regret: Reducing Background Bias for Novelty Detection via
Diffusion Models [72.07462371883501]
We propose emphProjection Regret (PR), an efficient novelty detection method that mitigates the bias of non-semantic information.
PR computes the perceptual distance between the test image and its diffusion-based projection to detect abnormality.
Extensive experiments demonstrate that PR outperforms the prior art of generative-model-based novelty detection methods by a significant margin.
arXiv Detail & Related papers (2023-12-05T09:44:47Z) - Interpretable Out-Of-Distribution Detection Using Pattern Identification [0.0]
Out-of-distribution (OoD) detection for data-based programs is a goal of paramount importance.
Common approaches in the literature tend to train detectors requiring inside-of-distribution (in-distribution, or IoD) and OoD validation samples.
We propose to use existing work from the field of explainable AI, namely the PARTICUL pattern identification algorithm, in order to build more interpretable and robust OoD detectors.
arXiv Detail & Related papers (2023-01-24T15:35:54Z) - Uncertain Facial Expression Recognition via Multi-task Assisted
Correction [43.02119884581332]
We propose a novel method of multi-task assisted correction in addressing uncertain facial expression recognition called MTAC.
Specifically, a confidence estimation block and a weighted regularization module are applied to highlight solid samples and suppress uncertain samples in every batch.
Experiments on RAF-DB, AffectNet, and AffWild2 datasets demonstrate that the MTAC obtains substantial improvements over baselines when facing synthetic and real uncertainties.
arXiv Detail & Related papers (2022-12-14T10:28:08Z) - Diffusion Denoising Process for Perceptron Bias in Out-of-distribution
Detection [67.49587673594276]
We introduce a new perceptron bias assumption that suggests discriminator models are more sensitive to certain features of the input, leading to the overconfidence problem.
We demonstrate that the diffusion denoising process (DDP) of DMs serves as a novel form of asymmetric, which is well-suited to enhance the input and mitigate the overconfidence problem.
Our experiments on CIFAR10, CIFAR100, and ImageNet show that our method outperforms SOTA approaches.
arXiv Detail & Related papers (2022-11-21T08:45:08Z) - Raising the Bar on the Evaluation of Out-of-Distribution Detection [88.70479625837152]
We define 2 categories of OoD data using the subtly different concepts of perceptual/visual and semantic similarity to in-distribution (iD) data.
We propose a GAN based framework for generating OoD samples from each of these 2 categories, given an iD dataset.
We show that a) state-of-the-art OoD detection methods which perform exceedingly well on conventional benchmarks are significantly less robust to our proposed benchmark.
arXiv Detail & Related papers (2022-09-24T08:48:36Z) - Exploring Robustness of Unsupervised Domain Adaptation in Semantic
Segmentation [74.05906222376608]
We propose adversarial self-supervision UDA (or ASSUDA) that maximizes the agreement between clean images and their adversarial examples by a contrastive loss in the output space.
This paper is rooted in two observations: (i) the robustness of UDA methods in semantic segmentation remains unexplored, which pose a security concern in this field; and (ii) although commonly used self-supervision (e.g., rotation and jigsaw) benefits image tasks such as classification and recognition, they fail to provide the critical supervision signals that could learn discriminative representation for segmentation tasks.
arXiv Detail & Related papers (2021-05-23T01:50:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.