論文の概要: Relative Positioning for Aerial Robot Path Planning in GPS Denied Environment
- arxiv url: http://arxiv.org/abs/2409.10193v1
- Date: Mon, 16 Sep 2024 11:35:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-17 15:40:35.115911
- Title: Relative Positioning for Aerial Robot Path Planning in GPS Denied Environment
- Title(参考訳): GPSデニッド環境における空中ロボット経路計画の相対的位置決め
- Authors: Farzad Sanati,
- Abstract要約: 本稿では、自律型UAVナビゲーションにおける最も重要な要素の一つ、すなわち、初期位置決め(Initial Positioning)をローカライゼーション(Localisation)と呼ぶ。
これにより、自律型UAVのチームが作戦基地に相対的な位置を確立することができ、ブッシュファイアに影響を受けた地域でチームの捜索と偵察を開始することができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: One of the most useful applications of intelligent aerial robots sometimes called Unmanned Aerial Vehicles (UAV) in Australia is known to be in bushfire monitoring and prediction operations. A swarm of autonomous drones/UAVs programmed to work in real-time observing the fire parameters using their onboard sensors would be valuable in reducing the life-threatening impact of that fire. However autonomous UAVs face serious challenges in their positioning and navigation in critical bushfire conditions such as remoteness and severe weather conditions where GPS signals could also be unreliable. This paper tackles one of the most important factors in autonomous UAV navigation, namely Initial Positioning sometimes called Localisation. The solution provided by this paper will enable a team of autonomous UAVs to establish a relative position to their base of operation to be able to commence a team search and reconnaissance in a bushfire-affected area and find their way back to their base without the help of GPS signals.
- Abstract(参考訳): オーストラリアの無人航空機(Unmanned Aerial Vehicles, UAV)と呼ばれるインテリジェントな航空ロボットの最も有用な応用の1つは、ブッシュファイアの監視と予測操作にあることが知られている。
ドローンや無人航空機の群れが、オンボードセンサーを使って火のパラメータをリアルタイムで観察するようにプログラムされている。
しかし、自律型UAVは、リモートネスやGPS信号が信頼性に欠ける厳しい気象条件など、重要なブッシュファイア条件における位置決めとナビゲーションにおいて深刻な課題に直面している。
本稿では、自律型UAVナビゲーションにおける最も重要な要素の一つ、すなわち、初期位置決め(Initial Positioning)をローカライゼーション(Localisation)と呼ぶ。
本稿では,自律型UAVのチームが運用基地に対する相対的な位置を確立することで,ブッシュファイアの影響を受けた地域でチーム検索と偵察を開始し,GPS信号の助けを借りずに基地に戻ることができる。
関連論文リスト
- Long-Range Vision-Based UAV-assisted Localization for Unmanned Surface Vehicles [7.384309568198598]
地球測位システム (GPS) は海洋環境下での無人表面車両 (USV) によるフィールド操作に必須のナビゲーション手法となっている。
GPSは、自然の干渉や悪意のある妨害攻撃に弱いため、必ずしも屋外で利用できるとは限らない。
本研究では,無人航空機(UAV)を用いて,制限された海洋環境下でのUSVのローカライズを支援する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-08-21T08:37:37Z) - MSight: An Edge-Cloud Infrastructure-based Perception System for
Connected Automated Vehicles [58.461077944514564]
本稿では,自動走行車に特化して設計された最先端道路側認識システムであるMSightについて述べる。
MSightは、リアルタイムの車両検出、ローカライゼーション、トラッキング、短期的な軌道予測を提供する。
評価は、待ち時間を最小限にしてレーンレベルの精度を維持するシステムの能力を強調している。
論文 参考訳(メタデータ) (2023-10-08T21:32:30Z) - Efficient Real-time Smoke Filtration with 3D LiDAR for Search and Rescue
with Autonomous Heterogeneous Robotic Systems [56.838297900091426]
スモークとダストは、搭載された知覚システムに依存するため、あらゆる移動ロボットプラットフォームの性能に影響を与える。
本稿では,重みと空間情報に基づく新しいモジュラー計算フィルタを提案する。
論文 参考訳(メタデータ) (2023-08-14T16:48:57Z) - Autonomous Systems: Autonomous Systems: Indoor Drone Navigation [0.0]
このシステムは、屋内環境で自律走行できるシミュレーションクワッドコプターを作成する。
目標は、ROS用のスラムツールボックスと、Nav2ナビゲーションシステムフレームワークを使用して、シミュレートされたドローンを構築することだ。
論文 参考訳(メタデータ) (2023-04-18T10:40:00Z) - UAV-aided RF Mapping for Sensing and Connectivity in Wireless Networks [52.14281905671453]
無人航空機(UAV)を空飛ぶ無線アクセスネットワーク(RAN)ノードとして使用することは、従来の固定地上配備を補完する。
無線マッピングは、この課題に関連する課題の1つであり、ここでは無線マッピングと呼ばれている。
接続性, センサ性, ローカライゼーション性能の観点から, 無線マッピングによる利点を示す。
論文 参考訳(メタデータ) (2022-05-06T16:16:08Z) - ADAPT: An Open-Source sUAS Payload for Real-Time Disaster Prediction and
Response with AI [55.41644538483948]
小型無人航空機システム(sUAS)は、多くの人道支援や災害対応作戦において顕著な構成要素となっている。
我々は,SUAS上にリアルタイムAIとコンピュータビジョンをデプロイするための,オープンソースのADAPTマルチミッションペイロードを開発した。
本研究では,河川氷の状態を監視し,破滅的な洪水現象をタイムリーに予測するための,リアルタイム・飛行中の氷分断の例を示す。
論文 参考訳(メタデータ) (2022-01-25T14:51:19Z) - Autonomous Aerial Robot for High-Speed Search and Intercept Applications [86.72321289033562]
高速物体把握のための完全自律飛行ロボットが提案されている。
追加のサブタスクとして、我々のシステムは、表面に近い極にある気球を自律的にピアスすることができる。
我々のアプローチは、挑戦的な国際競争で検証され、優れた結果が得られました。
論文 参考訳(メタデータ) (2021-12-10T11:49:51Z) - A Multi-UAV System for Exploration and Target Finding in Cluttered and
GPS-Denied Environments [68.31522961125589]
複雑なGPSを用いた複雑な環境において,UAVのチームが協調して目標を探索し,発見するための枠組みを提案する。
UAVのチームは自律的にナビゲートし、探索し、検出し、既知の地図で散らばった環境でターゲットを見つける。
その結果, 提案方式は, 時間的コスト, 調査対象地域の割合, 捜索・救助ミッションの成功率などの面で改善されていることがわかった。
論文 参考訳(メタデータ) (2021-07-19T12:54:04Z) - AutoSOS: Towards Multi-UAV Systems Supporting Maritime Search and Rescue
with Lightweight AI and Edge Computing [27.15999421608932]
本稿では,自律型マルチロボット探索・救助支援プラットフォームの開発を支援するAutoSOSプロジェクトの方向性について述べる。
このプラットフォームは、新しい適応型ディープラーニングアルゴリズムを用いて、環境の初期評価のための偵察ミッションを実行することを目的としている。
ドローンが潜在的な物体を見つけると、そのセンサーデータを船に送る。
論文 参考訳(メタデータ) (2020-05-07T12:22:15Z) - Dynamic Radar Network of UAVs: A Joint Navigation and Tracking Approach [36.587096293618366]
新たな問題は、建物の後ろに隠れている無人小型無人航空機(UAV)を追跡することである。
本稿では,悪意のある標的のリアルタイムかつ高精度な追跡のためのUAVの動的レーダネットワークを提案する。
論文 参考訳(メタデータ) (2020-01-13T23:23:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。