論文の概要: Kernel Descent -- a Novel Optimizer for Variational Quantum Algorithms
- arxiv url: http://arxiv.org/abs/2409.10257v1
- Date: Mon, 16 Sep 2024 13:10:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-17 15:30:17.016493
- Title: Kernel Descent -- a Novel Optimizer for Variational Quantum Algorithms
- Title(参考訳): Kernel Descent - 変分量子アルゴリズムの新しい最適化法
- Authors: Lars Simon, Holger Eble, Manuel Radons,
- Abstract要約: 変動量子アルゴリズムの基礎となる関数を最小化するための新しいアルゴリズムであるカーネル降下を導入する。
特に、カーネル降下が勾配降下と量子解析降下より優れるシナリオを示す。
カーネル降下は、局所近似の構築において、再生されたカーネルヒルベルト空間技術(英語版)を使わずに、自身を分離する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, variational quantum algorithms have garnered significant attention as a candidate approach for near-term quantum advantage using noisy intermediate-scale quantum (NISQ) devices. In this article we introduce kernel descent, a novel algorithm for minimizing the functions underlying variational quantum algorithms. We compare kernel descent to existing methods and carry out extensive experiments to demonstrate its effectiveness. In particular, we showcase scenarios in which kernel descent outperforms gradient descent and quantum analytic descent. The algorithm follows the well-established scheme of iteratively computing classical local approximations to the objective function and subsequently executing several classical optimization steps with respect to the former. Kernel descent sets itself apart with its employment of reproducing kernel Hilbert space techniques in the construction of the local approximations -- which leads to the observed advantages.
- Abstract(参考訳): 近年,ノイズのある中間規模量子(NISQ)デバイスを用いた短期量子優位性の候補として,変分量子アルゴリズムが注目されている。
本稿では、変動量子アルゴリズムの基礎となる関数を最小化するための新しいアルゴリズムであるカーネル降下について紹介する。
既存の手法と比較し、その効果を実証するために広範な実験を行う。
特に、カーネル降下が勾配降下と量子解析降下より優れるシナリオを示す。
このアルゴリズムは、目的関数に対する古典的局所近似を反復的に計算し、その後、前者に関していくつかの古典的最適化手順を実行するという、確立されたスキームに従う。
カーネル降下は、局所近似の構築において、再現されたカーネルヒルベルト空間技術(英語版)を使わずに、それ自体を分離し、観測された優位性をもたらす。
関連論文リスト
- Random coordinate descent: a simple alternative for optimizing parameterized quantum circuits [4.112419132722306]
本稿では、全勾配降下アルゴリズムに代わる実用的で実装が容易なランダム座標降下アルゴリズムを提案する。
本稿では,パラメータ化量子回路の実用最適化における計測ノイズの挙動から,解析可能な最適化問題を提案する。
論文 参考訳(メタデータ) (2023-10-31T18:55:45Z) - Pure Quantum Gradient Descent Algorithm and Full Quantum Variational
Eigensolver [0.7149735232319818]
勾配勾配勾配勾配法は広く採用されている最適化法である。
単一オラクル計算のみを必要とする新しい量子ベース勾配計算法を提案する。
我々は量子勾配降下法をうまく実装し、変分量子固有解法(VQE)に適用した。
論文 参考訳(メタデータ) (2023-05-07T05:52:41Z) - A quantum advantage over classical for local max cut [48.02822142773719]
量子最適化近似アルゴリズム(QAOA)は、次数3グラフ上の古典的手法に匹敵する計算上の優位性を持つ。
結果として、最先端の量子ハードウェアに関係している小規模量子計算でさえ、比較可能な単純な古典よりも大きな優位性を持つ可能性が示唆された。
論文 参考訳(メタデータ) (2023-04-17T16:42:05Z) - Fast Computation of Optimal Transport via Entropy-Regularized Extragradient Methods [75.34939761152587]
2つの分布間の最適な輸送距離の効率的な計算は、様々な応用を促進するアルゴリズムとして機能する。
本稿では,$varepsilon$加法精度で最適な輸送を計算できるスケーラブルな一階最適化法を提案する。
論文 参考訳(メタデータ) (2023-01-30T15:46:39Z) - Faster variational quantum algorithms with quantum kernel-based
surrogate models [0.0]
本稿では,雑音量子プロセッサ上での小型から中規模の変分アルゴリズムを提案する。
提案手法は,計算負荷をこれらのハイブリッドアルゴリズムの古典的成分にシフトさせ,量子プロセッサへのクエリ数を劇的に削減する。
論文 参考訳(メタデータ) (2022-11-02T14:11:25Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
テンソルネットワーク(TN)アルゴリズムは、パラメタライズド量子回路(PQC)にマッピングできる
本稿では,現実的な量子回路を用いてTN状態を近似する新しいプロトコルを提案する。
その結果、量子回路の逐次的な成長と最適化を含む1つの特定のプロトコルが、他の全ての手法より優れていることが明らかとなった。
論文 参考訳(メタデータ) (2022-09-01T17:08:41Z) - A Sublinear-Time Quantum Algorithm for Approximating Partition Functions [0.0]
本稿では,ギブス分割関数を線形時間で推定する新しい量子アルゴリズムを提案する。
これは、vStefankovivc, Vempala, Vigodaの半周期的なほぼ直線時間で得られる最初のスピードアップである。
論文 参考訳(メタデータ) (2022-07-18T14:41:48Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
量子力学シミュレーションのための量子アルゴリズムは、伝統的に時間進化作用素のトロッター近似の実装に基づいている。
変分量子アルゴリズムは欠かせない代替手段となり、現在のハードウェア上での小規模なシミュレーションを可能にしている。
量子ゲートコストが明らかに削減されているにもかかわらず、現在の実装における変分法は量子的優位性をもたらすことはありそうにない。
論文 参考訳(メタデータ) (2021-08-09T18:00:05Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisyハイブリッド量子古典アルゴリズムは、ノイズ中間量子デバイスの使用を最大化する強力なツールである。
我々は、変分量子アルゴリズムで使用されるそのようなアンサーゼを「効率的な回路訓練」(PECT)と呼ぶ戦略を提案する。
すべてのアンサッツパラメータを一度に最適化する代わりに、PECTは一連の変分アルゴリズムを起動する。
論文 参考訳(メタデータ) (2020-10-01T18:14:11Z) - IDEAL: Inexact DEcentralized Accelerated Augmented Lagrangian Method [64.15649345392822]
本稿では,局所関数が滑らかで凸な分散最適化環境下での原始的手法設計のためのフレームワークを提案する。
提案手法は,加速ラグランジアン法により誘導されるサブプロブレム列を概ね解いたものである。
加速度勾配降下と組み合わせることで,収束速度が最適で,最近導出された下界と一致した新しい原始アルゴリズムが得られる。
論文 参考訳(メタデータ) (2020-06-11T18:49:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。