論文の概要: HMF: A Hybrid Multi-Factor Framework for Dynamic Intraoperative Hypotension Prediction
- arxiv url: http://arxiv.org/abs/2409.11064v1
- Date: Tue, 17 Sep 2024 10:46:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-18 17:05:36.319270
- Title: HMF: A Hybrid Multi-Factor Framework for Dynamic Intraoperative Hypotension Prediction
- Title(参考訳): HMF : 動的術中血圧予測のためのハイブリッド多要素フレームワーク
- Authors: Mingyue Cheng, Jintao Zhang, Zhiding Liu, Chunli Liu, Yanhu Xie,
- Abstract要約: 平均動脈圧(MAP)を用いた術中低血圧(IOH)予測は,術中患者の予後に重要な意味を持つ重要な研究領域である。
既存のアプローチは主に、生理学的信号の動的な性質を無視する静的なモデリングパラダイムを使用している。
血圧予測タスクとしてIOH予測を再構成するHMF(Hybrid Multi-Factor)フレームワークを提案する。
- 参考スコア(独自算出の注目度): 2.7807763048110337
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Intraoperative hypotension (IOH) prediction using Mean Arterial Pressure (MAP) is a critical research area with significant implications for patient outcomes during surgery. However, existing approaches predominantly employ static modeling paradigms that overlook the dynamic nature of physiological signals. In this paper, we introduce a novel Hybrid Multi-Factor (HMF) framework that reformulates IOH prediction as a blood pressure forecasting task. Our framework leverages a Transformer encoder, specifically designed to effectively capture the temporal evolution of MAP series through a patch-based input representation, which segments the input physiological series into informative patches for accurate analysis. To address the challenges of distribution shift in physiological series, our approach incorporates two key innovations: (1) Symmetric normalization and de-normalization processes help mitigate distributional drift in statistical properties, thereby ensuring the model's robustness across varying conditions, and (2) Sequence decomposition, which disaggregates the input series into trend and seasonal components, allowing for a more precise modeling of inherent sequence dependencies. Extensive experiments conducted on two real-world datasets demonstrate the superior performance of our approach compared to competitive baselines, particularly in capturing the nuanced variations in input series that are crucial for accurate IOH prediction.
- Abstract(参考訳): 平均動脈圧(MAP)を用いた術中低血圧(IOH)予測は,術中患者の予後に重要な意味を持つ重要な研究領域である。
しかし、既存のアプローチは、生理学的信号の動的な性質を無視する静的なモデリングパラダイムを主に採用している。
本稿では,血圧予測タスクとしてIOH予測を再構成するHMF(Hybrid Multi-Factor)フレームワークを提案する。
本フレームワークでは,MAP系列の時間的進化をパッチベースの入力表現によって効果的に捉えるために,Transformerエンコーダを活用し,入力生理的系列を正確な解析のために情報的パッチに分割する。
生理的系列における分布シフトの課題に対処するために,本研究では,(1)対称性の正規化と非正規化プロセスが,統計特性における分布のドリフトを緩和し,様々な条件にまたがるモデルのロバスト性を確保すること,(2)入力系列を傾向と季節成分に分解し,固有配列依存のより正確なモデリングを可能にするシーケンス分解という,2つの重要なイノベーションを取り入れた。
2つの実世界のデータセットで実施された大規模な実験は、競合するベースラインと比較して、我々のアプローチの優れた性能を示しており、特に正確なIOH予測に不可欠な入力系列の微妙な変動を捉えている。
関連論文リスト
- Mesh-Informed Reduced Order Models for Aneurysm Rupture Risk Prediction [0.0]
グラフニューラルネットワーク(GNN)は、有限体積(FV)離散化によって得られるメッシュの自然なグラフ構造を利用する。
実験的な検証フレームワークは有望な結果をもたらし,その方法が次元の呪いを克服する有効な代替手段であることを確認した。
論文 参考訳(メタデータ) (2024-10-04T09:39:15Z) - FUSE: Fast Unified Simulation and Estimation for PDEs [11.991297011923004]
同じフレームワーク内で両方の問題を解決することは、正確性と堅牢性において一貫した利益をもたらす可能性がある、と私たちは主張する。
本研究は,本手法の全身血行動態シミュレーションにおける連続的および離散的バイオマーカーの予測能力について述べる。
論文 参考訳(メタデータ) (2024-05-23T13:37:26Z) - MPRE: Multi-perspective Patient Representation Extractor for Disease
Prediction [3.914545513460964]
疾患予測のための多視点患者表現エクストラクタ(MPRE)を提案する。
具体的には、動的特徴の傾向と変動情報を抽出する周波数変換モジュール(FTM)を提案する。
2D Multi-Extraction Network (2D MEN) において、傾向と変動に基づいて2次元時間テンソルを形成する。
また,FODAM(First-Order difference Attention Mechanism)も提案する。
論文 参考訳(メタデータ) (2024-01-01T13:52:05Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
本稿では,MedDiffusion という,エンドツーエンドの拡散に基づくリスク予測モデルを提案する。
トレーニング中に合成患者データを作成し、サンプルスペースを拡大することで、リスク予測性能を向上させる。
ステップワイズ・アテンション・メカニズムを用いて患者の来訪者間の隠れた関係を識別し、高品質なデータを生成する上で最も重要な情報をモデルが自動的に保持することを可能にする。
論文 参考訳(メタデータ) (2023-10-04T01:36:30Z) - Simulation-based Inference for Cardiovascular Models [57.92535897767929]
シミュレーションに基づく推論を用いて、波形をプラプシブルな生理的パラメータにマッピングする逆問題を解決する。
臨床応用5種類のバイオマーカーのin-silico不確実性解析を行った。
我々はMIMIC-III波形データベースを用いて,ビビオとシリカのギャップについて検討した。
論文 参考訳(メタデータ) (2023-07-26T02:34:57Z) - Differentiable Agent-based Epidemiology [71.81552021144589]
GradABM(GradABM)は、エージェントベースのモデリングのためのスケーラブルで微分可能な設計で、勾配に基づく学習と自動微分が可能である。
GradABMは、コモディティハードウェア上で数秒で数百万の人口をシミュレートし、ディープニューラルネットワークと統合し、異種データソースを取り込みます。
論文 参考訳(メタデータ) (2022-07-20T07:32:02Z) - Continuous Forecasting via Neural Eigen Decomposition of Stochastic
Dynamics [47.82509795873254]
本稿では,スパース観測と適応力学を用いた逐次予測のためのニューラル固有SDEアルゴリズムを提案する。
NESDEは、スパース観測による効率的な頻繁な予測を可能にするために、力学モデルに固有分解を適用する。
我々は,MIMIC-IVデータセットにおけるヘパリン投与後の血液凝固の患者適応予測を初めて行った。
論文 参考訳(メタデータ) (2022-01-31T22:16:50Z) - When in Doubt: Neural Non-Parametric Uncertainty Quantification for
Epidemic Forecasting [70.54920804222031]
既存の予測モデルは不確実な定量化を無視し、誤校正予測をもたらす。
不確実性を考慮した時系列予測のためのディープニューラルネットワークの最近の研究にもいくつかの制限がある。
本稿では,予測タスクを確率的生成過程としてモデル化し,EPIFNPと呼ばれる機能的ニューラルプロセスモデルを提案する。
論文 参考訳(メタデータ) (2021-06-07T18:31:47Z) - STELAR: Spatio-temporal Tensor Factorization with Latent Epidemiological
Regularization [76.57716281104938]
我々は,多くの地域の流行傾向を同時に予測するテンソル法を開発した。
stelarは離散時間差分方程式のシステムを通じて潜在時間正規化を組み込むことで長期予測を可能にする。
我々は、カウンティレベルと州レベルのCOVID-19データの両方を用いて実験を行い、このモデルが流行の興味深い潜伏パターンを識別できることを示します。
論文 参考訳(メタデータ) (2020-12-08T21:21:47Z) - Bidirectional Representation Learning from Transformers using Multimodal
Electronic Health Record Data to Predict Depression [11.1492931066686]
うつ病の予測のために,ERHシーケンス上で双方向の表現学習を行うための時間的深層学習モデルを提案する。
このモデルでは, 曲線(PRAUC)下において, 最良ベースラインモデルと比較して, 抑うつ予測において0.70から0.76まで, 精度・リコール面積の最大値が得られた。
論文 参考訳(メタデータ) (2020-09-26T17:56:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。