Several families of entanglement criteria for multipartite quantum systems based on generalized Wigner-Yanase skew information and variance
- URL: http://arxiv.org/abs/2409.11273v2
- Date: Sun, 13 Oct 2024 00:24:08 GMT
- Title: Several families of entanglement criteria for multipartite quantum systems based on generalized Wigner-Yanase skew information and variance
- Authors: Yan Hong, Xinlan Hao, Limin Gao,
- Abstract summary: We propose several families of entanglement criteria for detecting entanglement in multipartite or high-dimensional quantum states.
We show that the combination of the entanglement criteria has a stronger detection capability.
- Score: 7.889770216618095
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Quantum entanglement plays a critical role in many quantum applications, but detecting entanglement, especially in multipartite or high-dimensional quantum systems, remains a challenge. In this paper, we propose several families of entanglement criteria for detecting entanglement in multipartite or high-dimensional quantum states by the generalized Wigner-Yanase skew information $I^s(\rho,X)$ for $-1\leq s\leq0$ and variance. We also reveal a complementary character between the criteria based on the generalized Wigner-Yanase skew information and an alternative one based on variance through specific examples. We illustrate the merits of these criteria and show that the combination of the entanglement criteria has a stronger detection capability, as it is capable of detecting entangled states that remain unrecognized by other criteria.
Related papers
- Scalable multipartite entanglement criteria for continuous variables [6.181008505226926]
We propose a quite general entanglement detection method for all kinds of multipartite entanglement of multimode continuous variable systems.
Our criterion can detect entanglement, genuine entanglement and other kinds of inseparabilities almost imidiately.
arXiv Detail & Related papers (2024-11-05T13:27:19Z) - Majorization-based benchmark of the complexity of quantum processors [105.54048699217668]
We numerically simulate and characterize the operation of various quantum processors.
We identify and assess quantum complexity by comparing the performance of each device against benchmark lines.
We find that the majorization-based benchmark holds as long as the circuits' output states have, on average, high purity.
arXiv Detail & Related papers (2023-04-10T23:01:10Z) - Bounding entanglement dimensionality from the covariance matrix [1.8749305679160366]
High-dimensional entanglement has been identified as an important resource in quantum information processing.
Most widely used methods for experiments are based on fidelity measurements with respect to highly entangled states.
Here, instead, we consider covariances of collective observables, as in the well-known Covariance Matrix Criterion.
arXiv Detail & Related papers (2022-08-09T17:11:44Z) - Theory of Quantum Generative Learning Models with Maximum Mean
Discrepancy [67.02951777522547]
We study learnability of quantum circuit Born machines (QCBMs) and quantum generative adversarial networks (QGANs)
We first analyze the generalization ability of QCBMs and identify their superiorities when the quantum devices can directly access the target distribution.
Next, we prove how the generalization error bound of QGANs depends on the employed Ansatz, the number of qudits, and input states.
arXiv Detail & Related papers (2022-05-10T08:05:59Z) - Detecting entanglement in quantum many-body systems via permutation
moments [4.376631240407246]
We propose a framework for designing multipartite entanglement criteria based on permutation moments.
These criteria show strong detection capability in the multi-qubit Ising model with a long-range $XY$ Hamiltonian.
Our framework can also be generalized to detect the much more complicated entanglement structure in quantum many-body systems.
arXiv Detail & Related papers (2022-03-16T04:39:54Z) - Experimental violations of Leggett-Garg's inequalities on a quantum
computer [77.34726150561087]
We experimentally observe the violations of Leggett-Garg-Bell's inequalities on single and multi-qubit systems.
Our analysis highlights the limits of nowadays quantum platforms, showing that the above-mentioned correlation functions deviate from theoretical prediction as the number of qubits and the depth of the circuit grow.
arXiv Detail & Related papers (2021-09-06T14:35:15Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - Unveiling quantum entanglement in many-body systems from partial
information [0.0]
This paper introduces a flexible data-driven entanglement detection technique for uncharacterized quantum many-body states.
It is of immediate relevance to experiments in a quantum advantage regime.
arXiv Detail & Related papers (2021-07-08T16:17:02Z) - Preparing random states and benchmarking with many-body quantum chaos [48.044162981804526]
We show how to predict and experimentally observe the emergence of random state ensembles naturally under time-independent Hamiltonian dynamics.
The observed random ensembles emerge from projective measurements and are intimately linked to universal correlations built up between subsystems of a larger quantum system.
Our work has implications for understanding randomness in quantum dynamics, and enables applications of this concept in a wider context.
arXiv Detail & Related papers (2021-03-05T08:32:43Z) - A sufficient Entanglement Criterion Based On Quantum Fisher Information
and Variance [2.1320960069210484]
We derive inequality based on quantum Fisher information and quantum variance to detect multipartite entanglement.
Our criterion is experimentally measurable for detecting any $N$-qudit pure state mixed with white noisy.
arXiv Detail & Related papers (2020-05-12T03:14:53Z) - Genuine Network Multipartite Entanglement [62.997667081978825]
We argue that a source capable of distributing bipartite entanglement can, by itself, generate genuine $k$-partite entangled states for any $k$.
We provide analytic and numerical witnesses of genuine network entanglement, and we reinterpret many past quantum experiments as demonstrations of this feature.
arXiv Detail & Related papers (2020-02-07T13:26:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.