$k$-nonseparablity and $k$-partite entanglement criteria of multipartite quantum states
- URL: http://arxiv.org/abs/2505.13810v1
- Date: Tue, 20 May 2025 01:46:47 GMT
- Title: $k$-nonseparablity and $k$-partite entanglement criteria of multipartite quantum states
- Authors: Xiaofei Qi, Yuyang Pang, Jinchuan Hou,
- Abstract summary: Multipartite quantum entanglement is fundamental to the advancement of quantum science and technology.<n>We propose sufficient criteria for detecting $k$-nonseparability and $k$-partite entanglement.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multipartite quantum entanglement, as a core quantum resource, is fundamental to the advancement of quantum science and technology. In multipartite quantum systems, there are two kinds of quantum entanglement: $k$-nonseparability and $k$-partite entanglement. In this paper, we propose sufficient criteria for detecting $k$-nonseparability and $k$-partite entanglement by using the generalized Wigner-Yanase skew information and mutually unbiased measurements. Examples are given to demonstrate the detection capability and advantages of these criteria. As an application, an example of recognizing the networks by detecting the depth of quantum networks is given.
Related papers
- Several families of entanglement criteria for multipartite quantum systems based on generalized Wigner-Yanase skew information and variance [7.889770216618095]
We propose several families of entanglement criteria for detecting entanglement in multipartite or high-dimensional quantum states.
We show that the combination of the entanglement criteria has a stronger detection capability.
arXiv Detail & Related papers (2024-09-17T15:24:48Z) - Guarantees on the structure of experimental quantum networks [105.13377158844727]
Quantum networks connect and supply a large number of nodes with multi-party quantum resources for secure communication, networked quantum computing and distributed sensing.
As these networks grow in size, certification tools will be required to answer questions regarding their properties.
We demonstrate a general method to guarantee that certain correlations cannot be generated in a given quantum network.
arXiv Detail & Related papers (2024-03-04T19:00:00Z) - Efficient detection for quantum states containing fewer than $k$
unentangled particles in multipartite quantum systems [1.2319543784920304]
We investigate the detection of quantum states containing fewer than $k$ unentangled particles in multipartite quantum systems.
Based on calculations about operators, we derive two practical criteria for judging $N$-partite quantum states owning fewer than $k$ unentangled particles.
arXiv Detail & Related papers (2023-06-22T13:07:07Z) - A vertical gate-defined double quantum dot in a strained germanium
double quantum well [48.7576911714538]
Gate-defined quantum dots in silicon-germanium heterostructures have become a compelling platform for quantum computation and simulation.
We demonstrate the operation of a gate-defined vertical double quantum dot in a strained germanium double quantum well.
We discuss challenges and opportunities and outline potential applications in quantum computing and quantum simulation.
arXiv Detail & Related papers (2023-05-23T13:42:36Z) - Genuinely Multipartite Entanglement vias Shallow Quantum Circuits [0.0]
We prove any genuinely multipartite entanglement on finite-dimensional spaces can be generated by using 2-layer shallow quantum circuit.
We propose a semi-device-independent entanglement model depending on the local connection ability.
Results show new insights for the multipartite entanglement, quantum network, and measurement-based quantum computation.
arXiv Detail & Related papers (2022-04-20T07:41:30Z) - Efficient Bipartite Entanglement Detection Scheme with a Quantum
Adversarial Solver [89.80359585967642]
Proposal reformulates the bipartite entanglement detection as a two-player zero-sum game completed by parameterized quantum circuits.
We experimentally implement our protocol on a linear optical network and exhibit its effectiveness to accomplish the bipartite entanglement detection for 5-qubit quantum pure states and 2-qubit quantum mixed states.
arXiv Detail & Related papers (2022-03-15T09:46:45Z) - A thorough introduction to non-relativistic matrix mechanics in
multi-qudit systems with a study on quantum entanglement and quantum
quantifiers [0.0]
This article provides a deep and abiding understanding of non-relativistic matrix mechanics.
We derive and analyze the respective 1-qubit, 1-qutrit, 2-qubit, and 2-qudit coherent and incoherent density operators.
We also address the fundamental concepts of quantum nondemolition measurements, quantum decoherence and, particularly, quantum entanglement.
arXiv Detail & Related papers (2021-09-14T05:06:47Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
Quantum machine learning (QML) has emerged as a promising field that leans on the developments in quantum computing to explore large complex machine learning problems.
This paper proposes the first fully quantum federated learning framework that can operate over quantum data and, thus, share the learning of quantum circuit parameters in a decentralized manner.
arXiv Detail & Related papers (2021-05-30T12:19:27Z) - Genuine Network Multipartite Entanglement [62.997667081978825]
We argue that a source capable of distributing bipartite entanglement can, by itself, generate genuine $k$-partite entangled states for any $k$.
We provide analytic and numerical witnesses of genuine network entanglement, and we reinterpret many past quantum experiments as demonstrations of this feature.
arXiv Detail & Related papers (2020-02-07T13:26:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.