Beyond Algorithmic Fairness: A Guide to Develop and Deploy Ethical AI-Enabled Decision-Support Tools
- URL: http://arxiv.org/abs/2409.11489v1
- Date: Tue, 17 Sep 2024 18:37:53 GMT
- Title: Beyond Algorithmic Fairness: A Guide to Develop and Deploy Ethical AI-Enabled Decision-Support Tools
- Authors: Rosemarie Santa Gonzalez, Ryan Piansky, Sue M Bae, Justin Biddle, Daniel Molzahn,
- Abstract summary: The integration of artificial intelligence (AI) and optimization hold substantial promise for improving the efficiency, reliability, and resilience of engineered systems.
This paper identifies ethical considerations required when deploying algorithms at the intersection of AI and optimization.
Rather than providing a prescriptive set of rules, this paper aims to foster reflection and awareness among researchers.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The integration of artificial intelligence (AI) and optimization hold substantial promise for improving the efficiency, reliability, and resilience of engineered systems. Due to the networked nature of many engineered systems, ethically deploying methodologies at this intersection poses challenges that are distinct from other AI settings, thus motivating the development of ethical guidelines tailored to AI-enabled optimization. This paper highlights the need to go beyond fairness-driven algorithms to systematically address ethical decisions spanning the stages of modeling, data curation, results analysis, and implementation of optimization-based decision support tools. Accordingly, this paper identifies ethical considerations required when deploying algorithms at the intersection of AI and optimization via case studies in power systems as well as supply chain and logistics. Rather than providing a prescriptive set of rules, this paper aims to foster reflection and awareness among researchers and encourage consideration of ethical implications at every step of the decision-making process.
Related papers
- A Decision-driven Methodology for Designing Uncertainty-aware AI Self-Assessment [8.482630532500057]
It is unclear if a given AI system's predictions can be trusted by decision-makers in downstream applications.
This manuscript is a practical guide for machine learning engineers and AI system users to select the ideal self-assessment techniques.
arXiv Detail & Related papers (2024-08-02T14:43:45Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
We present a comprehensive study on the integration of machine learning (ML) techniques into Huawei Cloud's OptVerse AI solver.
We showcase our methods for generating complex SAT and MILP instances utilizing generative models that mirror multifaceted structures of real-world problem.
We detail the incorporation of state-of-the-art parameter tuning algorithms which markedly elevate solver performance.
arXiv Detail & Related papers (2024-01-11T15:02:15Z) - A Vision for Operationalising Diversity and Inclusion in AI [5.4897262701261225]
This study seeks to envision the operationalization of the ethical imperatives of diversity and inclusion (D&I) within AI ecosystems.
A significant challenge in AI development is the effective operationalization of D&I principles.
This paper proposes a vision of a framework for developing a tool utilizing persona-based simulation by Generative AI (GenAI)
arXiv Detail & Related papers (2023-12-11T02:44:39Z) - SEGO: Sequential Subgoal Optimization for Mathematical Problem-Solving [64.38649623473626]
Large Language Models (LLMs) have driven substantial progress in artificial intelligence.
We propose a novel framework called textbfSEquential subtextbfGoal textbfOptimization (SEGO) to enhance LLMs' ability to solve mathematical problems.
arXiv Detail & Related papers (2023-10-19T17:56:40Z) - PerfDetectiveAI -- Performance Gap Analysis and Recommendation in
Software Applications [0.0]
PerfDetectiveAI, a conceptual framework for performance gap analysis and suggestion in software applications is introduced in this research.
Modern machine learning (ML) and artificial intelligence (AI) techniques are used in PerfDetectiveAI to monitor performance measurements and identify areas of underperformance in software applications.
arXiv Detail & Related papers (2023-06-11T02:53:04Z) - Human-Centric Multimodal Machine Learning: Recent Advances and Testbed
on AI-based Recruitment [66.91538273487379]
There is a certain consensus about the need to develop AI applications with a Human-Centric approach.
Human-Centric Machine Learning needs to be developed based on four main requirements: (i) utility and social good; (ii) privacy and data ownership; (iii) transparency and accountability; and (iv) fairness in AI-driven decision-making processes.
We study how current multimodal algorithms based on heterogeneous sources of information are affected by sensitive elements and inner biases in the data.
arXiv Detail & Related papers (2023-02-13T16:44:44Z) - Towards Implementing Responsible AI [22.514717870367623]
We propose four aspects of AI system design and development, adapting processes used in software engineering.
The salient findings cover four aspects of AI system design and development, adapting processes used in software engineering.
arXiv Detail & Related papers (2022-05-09T14:59:23Z) - Achieving a Data-driven Risk Assessment Methodology for Ethical AI [3.523208537466128]
We show that a multidisciplinary research approach is the foundation of a pragmatic definition of ethical and societal risks faced by organizations using AI.
We propose a novel data-driven risk assessment methodology, entitled DRESS-eAI.
arXiv Detail & Related papers (2021-11-29T12:55:33Z) - A Field Guide to Federated Optimization [161.3779046812383]
Federated learning and analytics are a distributed approach for collaboratively learning models (or statistics) from decentralized data.
This paper provides recommendations and guidelines on formulating, designing, evaluating and analyzing federated optimization algorithms.
arXiv Detail & Related papers (2021-07-14T18:09:08Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
This paper proposes a comprehensive analysis of existing concepts coming from different disciplines tackling the notion of intelligence.
The aim is to identify shared notions or discrepancies to consider for qualifying AI systems.
arXiv Detail & Related papers (2021-05-07T12:01:31Z) - AI-based Modeling and Data-driven Evaluation for Smart Manufacturing
Processes [56.65379135797867]
We propose a dynamic algorithm for gaining useful insights about semiconductor manufacturing processes.
We elaborate on the utilization of a Genetic Algorithm and Neural Network to propose an intelligent feature selection algorithm.
arXiv Detail & Related papers (2020-08-29T14:57:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.