論文の概要: Graph Neural Network-State Predictive Information Bottleneck (GNN-SPIB) approach for learning molecular thermodynamics and kinetics
- arxiv url: http://arxiv.org/abs/2409.11843v1
- Date: Wed, 18 Sep 2024 09:53:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-19 18:23:34.777704
- Title: Graph Neural Network-State Predictive Information Bottleneck (GNN-SPIB) approach for learning molecular thermodynamics and kinetics
- Title(参考訳): GNN-SPIB(Graph Neural Network-State Predictive Information Bottleneck)アプローチによる分子熱力学と動力学の学習
- Authors: Ziyue Zou, Dedi Wang, Pratyush Tiwary,
- Abstract要約: 本稿では,グラフニューラルネットワークと State Predictive Information Bottleneck を組み合わせた Graph Neural Network-State Predictive Information Bottleneck (GNN-SPIB) フレームワークを提案する。
提案手法は3つのベンチマークシステムで検証され, 速度の遅いプロセスにおいて, 本質的な構造, 熱力学, 運動学的な情報を予測する。
この手法は複雑なシステムに対して有望であり、事前に定義された反応座標や入力特徴を必要としない効果的なサンプリングを可能にする。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Molecular dynamics simulations offer detailed insights into atomic motions but face timescale limitations. Enhanced sampling methods have addressed these challenges but even with machine learning, they often rely on pre-selected expert-based features. In this work, we present the Graph Neural Network-State Predictive Information Bottleneck (GNN-SPIB) framework, which combines graph neural networks and the State Predictive Information Bottleneck to automatically learn low-dimensional representations directly from atomic coordinates. Tested on three benchmark systems, our approach predicts essential structural, thermodynamic and kinetic information for slow processes, demonstrating robustness across diverse systems. The method shows promise for complex systems, enabling effective enhanced sampling without requiring pre-defined reaction coordinates or input features.
- Abstract(参考訳): 分子動力学シミュレーションは原子運動に関する詳細な洞察を提供するが、時間スケールの制限はない。
強化されたサンプリング手法はこれらの課題に対処してきたが、機械学習でさえ、事前に選択された専門家ベースの機能に依存していることが多い。
本研究では,グラフニューラルネットワークと State Predictive Information Bottleneck を組み合わせて,原子座標から直接低次元表現を自動的に学習する Graph Neural Network-State Predictive Information Bottleneck (GNN-SPIB) フレームワークを提案する。
提案手法は,3つのベンチマークシステムで検証し,低速プロセスに必須な構造,熱力学,動力学的情報を予測し,多様なシステムにまたがる堅牢性を実証する。
この手法は複雑なシステムに対して有望であり、事前に定義された反応座標や入力特徴を必要としない効果的なサンプリングを可能にする。
関連論文リスト
- geom2vec: pretrained GNNs as geometric featurizers for conformational dynamics [0.0]
我々はGeom2vecを紹介し、トレーニング済みグラフニューラルネットワーク(GNN)を普遍的なデファクトライザとして利用する。
さらに微調整することなく分子幾何学的パターンを捉えた伝達可能な構造表現を学習する。
論文 参考訳(メタデータ) (2024-09-30T00:36:06Z) - Mechanistic Neural Networks for Scientific Machine Learning [58.99592521721158]
我々は、科学における機械学習応用のためのニューラルネットワーク設計であるメカニスティックニューラルネットワークを提案する。
新しいメカニスティックブロックを標準アーキテクチャに組み込んで、微分方程式を表現として明示的に学習する。
我々のアプローチの中心は、線形プログラムを解くために線形ODEを解く技術に着想を得た、新しい線形計画解法(NeuRLP)である。
論文 参考訳(メタデータ) (2024-02-20T15:23:24Z) - CTAGE: Curvature-Based Topology-Aware Graph Embedding for Learning
Molecular Representations [11.12640831521393]
分子グラフデータから構造的洞察を抽出するために,$k$hopの離散リッチ曲率を用いたCTAGEの埋め込み手法を提案する。
その結果,ノード曲率の導入は,現在のグラフニューラルネットワークフレームワークの性能を著しく向上させることがわかった。
論文 参考訳(メタデータ) (2023-07-25T06:13:01Z) - GDBN: a Graph Neural Network Approach to Dynamic Bayesian Network [7.876789380671075]
スパースDAGの学習を目的としたスコアに基づくグラフニューラルネットワーク手法を提案する。
グラフニューラルネットワークを用いた手法は,動的ベイジアンネットワーク推論を用いた他の最先端手法よりも優れていた。
論文 参考訳(メタデータ) (2023-01-28T02:49:13Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
クオーロタのシステムダイナミクスを正確にモデル化することは、アジャイル、安全、安定したナビゲーションを保証する上で非常に重要です。
本稿では,ロボットの経験から,四重項系の力学を純粋に学習するための新しい物理インスパイアされた時間畳み込みネットワーク(PI-TCN)を提案する。
提案手法は,スパース時間的畳み込みと高密度フィードフォワード接続の表現力を組み合わせて,正確なシステム予測を行う。
論文 参考訳(メタデータ) (2022-06-07T13:51:35Z) - Inducing Gaussian Process Networks [80.40892394020797]
本稿では,特徴空間と誘導点を同時に学習するシンプルなフレームワークであるGaussian Process Network (IGN)を提案する。
特に誘導点は特徴空間で直接学習され、複雑な構造化領域のシームレスな表現を可能にする。
実世界のデータセットに対する実験結果から,IGNは最先端の手法よりも大幅に進歩していることを示す。
論文 参考訳(メタデータ) (2022-04-21T05:27:09Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - Exploiting Spiking Dynamics with Spatial-temporal Feature Normalization
in Graph Learning [9.88508686848173]
内在的なダイナミクスを持つ生物学的スパイキングニューロンは、脳の強力な表現力と学習能力を持つ。
ユークリッド空間タスクを処理するためのスパイクニューラルネットワーク(SNN)の最近の進歩にもかかわらず、非ユークリッド空間データの処理においてSNNを活用することは依然として困難である。
本稿では,グラフ学習のためのSNNの直接学習を可能にする,一般的なスパイクに基づくモデリングフレームワークを提案する。
論文 参考訳(メタデータ) (2021-06-30T11:20:16Z) - Physics perception in sloshing scenes with guaranteed thermodynamic
consistency [0.0]
自由表面の測定からスロッシング液の完全な状態を知るための戦略を提案する。
我々のアプローチは、リカレントニューラルネットワーク(RNN)に基づいて、低次多様体に利用可能な限られた情報を投影する。
論文 参考訳(メタデータ) (2021-06-24T20:13:56Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
スパイキングニューラルネットワーク(SNN)は、時間的スパイクパターンを用いて情報を表現し、伝達する。
本稿では,情報符号化,シナプス可塑性,意思決定におけるスパイクタイミングダイナミクスの寄与について検討し,将来のDeepSNNやニューロモルフィックハードウェアシステムの設計への新たな視点を提供する。
論文 参考訳(メタデータ) (2020-03-26T11:13:07Z) - Learning to Simulate Complex Physics with Graph Networks [68.43901833812448]
本稿では,機械学習のフレームワークとモデルの実装について紹介する。
グラフネットワーク・ベース・シミュレータ(GNS)と呼ばれる我々のフレームワークは、グラフ内のノードとして表現された粒子で物理系の状態を表現し、学習されたメッセージパスによって動的を計算します。
我々のモデルは,訓練中に数千の粒子による1段階の予測から,異なる初期条件,数千の時間ステップ,少なくとも1桁以上の粒子をテスト時に一般化できることを示す。
論文 参考訳(メタデータ) (2020-02-21T16:44:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。