論文の概要: Physically-Based Photometric Bundle Adjustment in Non-Lambertian Environments
- arxiv url: http://arxiv.org/abs/2409.11854v1
- Date: Wed, 18 Sep 2024 10:22:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-19 18:23:34.763899
- Title: Physically-Based Photometric Bundle Adjustment in Non-Lambertian Environments
- Title(参考訳): 非ランベルト環境における物理ベース光束調整
- Authors: Lei Cheng, Junpeng Hu, Haodong Yan, Mariia Gladkova, Tianyu Huang, Yun-Hui Liu, Daniel Cremers, Haoang Li,
- Abstract要約: 光度バンドル調整(PBA)は、ランベルトの世界を仮定してカメラのポーズと3次元幾何学を推定するのに広く用いられる。
光度一貫性の仮定は、現実の環境では非拡散反射が一般的であるため、しばしば違反される。
そこで本研究では,この問題を解決するための物理ベースPBA法を提案する。
- 参考スコア(独自算出の注目度): 59.96101889715997
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Photometric bundle adjustment (PBA) is widely used in estimating the camera pose and 3D geometry by assuming a Lambertian world. However, the assumption of photometric consistency is often violated since the non-diffuse reflection is common in real-world environments. The photometric inconsistency significantly affects the reliability of existing PBA methods. To solve this problem, we propose a novel physically-based PBA method. Specifically, we introduce the physically-based weights regarding material, illumination, and light path. These weights distinguish the pixel pairs with different levels of photometric inconsistency. We also design corresponding models for material estimation based on sequential images and illumination estimation based on point clouds. In addition, we establish the first SLAM-related dataset of non-Lambertian scenes with complete ground truth of illumination and material. Extensive experiments demonstrated that our PBA method outperforms existing approaches in accuracy.
- Abstract(参考訳): 光度バンドル調整(PBA)は、ランベルトの世界を仮定してカメラのポーズと3次元幾何学を推定するのに広く用いられる。
しかし、非拡散反射は実環境において一般的であるため、光度一貫性の仮定はしばしば違反する。
光度不整合は既存のPBA法の信頼性に大きく影響する。
そこで本研究では,物理量に基づく新しいPBA法を提案する。
具体的には,物質,照明,光路に関する物理量について紹介する。
これらの重みは、異なるレベルの測光不整合を持つ画素対を区別する。
また、逐次画像に基づく材料推定と点雲に基づく照明推定の対応モデルも設計する。
さらに,照明と素材の完全な真実を具現化した,非ランベルトシーンのSLAM関連データセットを初めて確立した。
PBA法は既存の手法よりも精度が高いことを示した。
関連論文リスト
- MERLiN: Single-Shot Material Estimation and Relighting for Photometric Stereo [26.032964551717548]
光度ステレオは通常、表面の正常を正確に回復するために複数の光源を含む複雑なデータ取得装置を必要とする。
MERLiNは、単一の画像ベースの逆レンダリングとリライトを単一の統合フレームワークに統合したアテンションベースの時間ガラスネットワークである。
論文 参考訳(メタデータ) (2024-09-01T09:32:03Z) - NeISF: Neural Incident Stokes Field for Geometry and Material Estimation [50.588983686271284]
多視点逆レンダリングは、異なる視点で撮影された一連の画像から形状、材料、照明などのシーンパラメータを推定する問題である。
本稿では,偏光手がかりを用いた曖昧さを低減する多視点逆フレームワークNeISFを提案する。
論文 参考訳(メタデータ) (2023-11-22T06:28:30Z) - On the Regularising Levenberg-Marquardt Method for Blinn-Phong
Photometric Stereo [0.0]
光度ステレオは、物体の3次元形状を計算する過程を指す。
我々は,Blinn-Phong反射率を用いたスペクトル効果のモデル化における非線形最適化問題を考える。
論文 参考訳(メタデータ) (2023-02-17T09:01:24Z) - A CNN Based Approach for the Point-Light Photometric Stereo Problem [26.958763133729846]
本稿では、遠距離場光度ステレオにおける深部ニューラルネットワークの最近の改良を活用して、現実的な仮定を処理できるCNNベースのアプローチを提案する。
われわれのアプローチは、DiLiGenT実世界のデータセットの最先端よりも優れている。
近距離点光源PSデータに対する我々のアプローチの性能を測定するため、LUCESを「近距離点光のための最初の実世界のデータセット」として紹介する。
論文 参考訳(メタデータ) (2022-10-10T12:57:12Z) - Self-calibrating Photometric Stereo by Neural Inverse Rendering [88.67603644930466]
本稿では3次元オブジェクト再構成のための非校正光度ステレオの課題に取り組む。
本研究では,物体形状,光方向,光強度を協調的に最適化する手法を提案する。
本手法は,実世界のデータセット上での光推定と形状復元における最先端の精度を示す。
論文 参考訳(メタデータ) (2022-07-16T02:46:15Z) - A Model for Multi-View Residual Covariances based on Perspective
Deformation [88.21738020902411]
マルチビューSfM, オードメトリ, SLAMセットアップにおける視覚的残差の共分散モデルの導出を行う。
我々は、合成データと実データを用いてモデルを検証し、それを光度および特徴量に基づくバンドル調整に統合する。
論文 参考訳(メタデータ) (2022-02-01T21:21:56Z) - Leveraging Spatial and Photometric Context for Calibrated Non-Lambertian
Photometric Stereo [61.6260594326246]
空間と測光の両方を同時に活用できる効率的な完全畳み込みアーキテクチャを提案する。
分離可能な4D畳み込みと2D熱マップを使うことで、サイズが小さくなり、効率が向上する。
論文 参考訳(メタデータ) (2021-03-22T18:06:58Z) - Deep Lighting Environment Map Estimation from Spherical Panoramas [0.0]
本稿では,単一のLDR単分子球状パノラマからHDR照明環境マップを推定するデータ駆動モデルを提案する。
データジェネレータと監視機構として画像ベースのリライティングを活用するために,表面形状の可用性を活用する。
論文 参考訳(メタデータ) (2020-05-16T14:23:05Z) - Multi-View Photometric Stereo: A Robust Solution and Benchmark Dataset
for Spatially Varying Isotropic Materials [65.95928593628128]
多視点光度ステレオ技術を用いて3次元形状と空間的に異なる反射率の両方をキャプチャする手法を提案する。
我々のアルゴリズムは、遠近点光源と遠近点光源に適している。
論文 参考訳(メタデータ) (2020-01-18T12:26:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。