論文の概要: Fitting Multilevel Factor Models
- arxiv url: http://arxiv.org/abs/2409.12067v2
- Date: Sun, 29 Sep 2024 20:30:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-01 22:00:50.454220
- Title: Fitting Multilevel Factor Models
- Title(参考訳): 多段階因子モデルに適合する
- Authors: Tetiana Parshakova, Trevor Hastie, Stephen Boyd,
- Abstract要約: 我々は,多段階因子モデルに適した期待最大化アルゴリズムの,新しい高速実装を開発する。
可逆PSD MLR行列の逆もまた、因子の間隔が同じMLR行列であることを示す。
線形時間と空間複素量を持つ拡張行列のコレスキー分解を計算するアルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 41.38783926370621
- License:
- Abstract: We examine a special case of the multilevel factor model, with covariance given by multilevel low rank (MLR) matrix~\cite{parshakova2023factor}. We develop a novel, fast implementation of the expectation-maximization (EM) algorithm, tailored for multilevel factor models, to maximize the likelihood of the observed data. This method accommodates any hierarchical structure and maintains linear time and storage complexities per iteration. This is achieved through a new efficient technique for computing the inverse of the positive definite MLR matrix. We show that the inverse of an invertible PSD MLR matrix is also an MLR matrix with the same sparsity in factors, and we use the recursive Sherman-Morrison-Woodbury matrix identity to obtain the factors of the inverse. Additionally, we present an algorithm that computes the Cholesky factorization of an expanded matrix with linear time and space complexities, yielding the covariance matrix as its Schur complement. This paper is accompanied by an open-source package that implements the proposed methods.
- Abstract(参考訳): マルチレベル低ランク行列~\cite{parshakova2023factor} で与えられる共分散を持つ多レベル因子モデルの特別な場合について検討する。
我々は,観測データの可能性を最大化するために,多レベル因子モデルに適した予測最大化(EM)アルゴリズムを高速に実装する。
この方法は任意の階層構造を許容し、反復ごとに線形時間と保存の複雑さを維持する。
これは、正定値MLR行列の逆数を計算するための新しい効率的な手法によって達成される。
逆 PSD MLR 行列の逆行列は因子の間隔が同じである MLR 行列でもあることを示し、逆行列の因子を得るために、再帰的シャーマン・モリソン・ウードベリー行列恒等式を用いる。
さらに、線形時間と空間の複素量を持つ拡張行列のコレスキー分解を計算し、共分散行列をシュア補数とするアルゴリズムを提案する。
本稿では,提案手法を実装したオープンソースパッケージを添付する。
関連論文リスト
- Spectral Entry-wise Matrix Estimation for Low-Rank Reinforcement
Learning [53.445068584013896]
低ランク構造を持つ強化学習(RL)における行列推定問題について検討した。
低ランク帯では、回収される行列は期待される腕の報酬を指定し、低ランクマルコフ決定プロセス(MDP)では、例えばMDPの遷移カーネルを特徴付ける。
簡単なスペクトルベースの行列推定手法は,行列の特異部分空間を効率よく復元し,ほぼ最小の入力誤差を示すことを示す。
論文 参考訳(メタデータ) (2023-10-10T17:06:41Z) - An Efficient Algorithm for Clustered Multi-Task Compressive Sensing [60.70532293880842]
クラスタ化マルチタスク圧縮センシングは、複数の圧縮センシングタスクを解決する階層モデルである。
このモデルに対する既存の推論アルゴリズムは計算コストが高く、高次元ではうまくスケールしない。
本稿では,これらの共分散行列を明示的に計算する必要をなくし,モデル推論を大幅に高速化するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-09-30T15:57:14Z) - Classification of BCI-EEG based on augmented covariance matrix [0.0]
本稿では,運動画像分類の改善を目的とした自己回帰モデルから抽出した拡張共分散に基づく新しいフレームワークを提案する。
私たちはMOABBフレームワークを使って、いくつかのデータセットといくつかの主題でアプローチを検証します。
論文 参考訳(メタデータ) (2023-02-09T09:04:25Z) - Learning idempotent representation for subspace clustering [7.6275971668447]
理想的な再構成係数行列は2つの特性を持つべきである: 1) ブロックは各ブロックが部分空間を示す対角線であり、2) 各ブロックは完全連結である。
我々は、正規化メンバシップ行列を近似した再構成係数を求めるために、等等表現(IDR)アルゴリズムを考案する。
合成と実世界の両方のデータセットで実施された実験は、IDRが効率的かつ効率的なサブスペースクラスタリングアルゴリズムであることを証明している。
論文 参考訳(メタデータ) (2022-07-29T01:39:25Z) - High-Dimensional Sparse Bayesian Learning without Covariance Matrices [66.60078365202867]
共分散行列の明示的な構成を避ける新しい推論手法を提案する。
本手法では, 数値線形代数と共役勾配アルゴリズムの対角線推定結果とを結合する。
いくつかのシミュレーションにおいて,本手法は計算時間とメモリにおける既存手法よりも拡張性が高い。
論文 参考訳(メタデータ) (2022-02-25T16:35:26Z) - Dictionary-based Low-Rank Approximations and the Mixed Sparse Coding
problem [7.132368785057316]
本稿では、LASSOに基づく効率的なMSC解法を用いて、辞書に基づく行列分解と正準多進分解を計算する方法を示す。
超スペクトル画像処理と化学計測の文脈における辞書に基づく行列分解と正準多進分解の計算に、LASSOに基づく効率的なMSC解法を適用する方法を示す。
論文 参考訳(メタデータ) (2021-11-24T10:32:48Z) - Multi-View Spectral Clustering with High-Order Optimal Neighborhood
Laplacian Matrix [57.11971786407279]
マルチビュースペクトルクラスタリングは、データ間の固有のクラスタ構造を効果的に明らかにすることができる。
本稿では,高次最適近傍ラプラシア行列を学習するマルチビュースペクトルクラスタリングアルゴリズムを提案する。
提案アルゴリズムは, 1次ベースと高次ベースの両方の線形結合の近傍を探索し, 最適ラプラシア行列を生成する。
論文 参考訳(メタデータ) (2020-08-31T12:28:40Z) - Robust Low-rank Matrix Completion via an Alternating Manifold Proximal
Gradient Continuation Method [47.80060761046752]
ロバスト低ランク行列補完(RMC)は、コンピュータビジョン、信号処理、機械学習アプリケーションのために広く研究されている。
この問題は、部分的に観察された行列を低ランク行列とスパース行列の重ね合わせに分解することを目的とした。
RMCに取り組むために広く用いられるアプローチは、低ランク行列の核ノルム(低ランク性を促進するために)とスパース行列のl1ノルム(空間性を促進するために)を最小化する凸定式化を考えることである。
本稿では、近年のローワークの動機付けについて述べる。
論文 参考訳(メタデータ) (2020-08-18T04:46:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。