論文の概要: Linguistic Minimal Pairs Elicit Linguistic Similarity in Large Language Models
- arxiv url: http://arxiv.org/abs/2409.12435v2
- Date: Fri, 13 Dec 2024 15:50:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-16 15:00:40.478628
- Title: Linguistic Minimal Pairs Elicit Linguistic Similarity in Large Language Models
- Title(参考訳): 大規模言語モデルにおける言語学的最小ペアの言語学的類似性
- Authors: Xinyu Zhou, Delong Chen, Samuel Cahyawijaya, Xufeng Duan, Zhenguang G. Cai,
- Abstract要約: 我々はLarge Language Models(LLMs)の内部言語表現を探索するために、言語最小ペアを活用する。
3つの言語で100以上のLLMと150k以上の最小ペアにまたがる大規模な実験では、4つの重要な側面から言語的類似性の特性を明らかにした。
- 参考スコア(独自算出の注目度): 15.857451401890092
- License:
- Abstract: We introduce a novel analysis that leverages linguistic minimal pairs to probe the internal linguistic representations of Large Language Models (LLMs). By measuring the similarity between LLM activation differences across minimal pairs, we quantify the and gain insight into the linguistic knowledge captured by LLMs. Our large-scale experiments, spanning 100+ LLMs and 150k minimal pairs in three languages, reveal properties of linguistic similarity from four key aspects: consistency across LLMs, relation to theoretical categorizations, dependency to semantic context, and cross-lingual alignment of relevant phenomena. Our findings suggest that 1) linguistic similarity is significantly influenced by training data exposure, leading to higher cross-LLM agreement in higher-resource languages. 2) Linguistic similarity strongly aligns with fine-grained theoretical linguistic categories but weakly with broader ones. 3) Linguistic similarity shows a weak correlation with semantic similarity, showing its context-dependent nature. 4) LLMs exhibit limited cross-lingual alignment in their understanding of relevant linguistic phenomena. This work demonstrates the potential of minimal pairs as a window into the neural representations of language in LLMs, shedding light on the relationship between LLMs and linguistic theory. Codes and data are available at https://github.com/ChenDelong1999/Linguistic-Similarity
- Abstract(参考訳): 本稿では,言語モデル(LLM)の内部言語表現を探索するために,言語最小ペアを活用する新しい分析手法を提案する。
最小ペア間のLLMアクティベーション差の類似性を測定することにより、LLMが捉えた言語知識の定量化と洞察を得る。
3言語で100以上のLLMと150k以上の最小ペアにまたがる大規模な実験では、LLM間の一貫性、理論的分類との関係、意味的文脈への依存性、関連する現象の言語間アライメントという、4つの重要な側面から言語的類似性の性質を明らかにした。
私たちの発見は
1) 言語的類似性は, 訓練データ露出に大きく影響され, 高い情報源言語におけるLLM間の合意が高くなる。
2) 言語学的類似性は, より微細な理論的言語カテゴリーと強く一致しているが, より広範に一致している。
3)言語的類似性は意味的類似性と弱い相関を示し,その文脈依存性を示す。
4) LLMは関連言語現象の理解に限定的な言語間アライメントを示す。
この研究は、LLMにおける言語表現の窓口としての最小対の可能性を示し、LLMと言語理論の関係に光を当てている。
codes and data are available at https://github.com/ChenDelong 1999/Linguistic-Similarity
関連論文リスト
- Large Language Models as Neurolinguistic Subjects: Identifying Internal Representations for Form and Meaning [49.60849499134362]
本研究では,大言語モデル(LLM)の記号化(形式)および記号化(意味)に関する言語的理解について検討する。
伝統的な精神言語学的評価は、しばしばLSMの真の言語能力を誤って表現する統計バイアスを反映している。
ミニマルペアと診断プローブを組み合わせてモデル層間のアクティベーションパターンを解析する新しい手法を用いて,ニューロ言語学的アプローチを提案する。
論文 参考訳(メタデータ) (2024-11-12T04:16:44Z) - Large Language Models are Easily Confused: A Quantitative Metric, Security Implications and Typological Analysis [5.029635172046762]
言語融合(Language Confusion)とは、大言語モデル(LLM)が所望の言語でもなく、文脈的に適切な言語でもテキストを生成する現象である。
我々は,この混乱を計測し定量化するために設計された,新しい計量であるLanguage Confusion Entropyを導入する。
論文 参考訳(メタデータ) (2024-10-17T05:43:30Z) - Converging to a Lingua Franca: Evolution of Linguistic Regions and Semantics Alignment in Multilingual Large Language Models [11.423589362950812]
大規模言語モデル(LLM)は、特に多言語文脈において顕著な性能を示した。
近年の研究では、LLMは、ある言語で学んだスキルを他の言語に伝達することができることが示唆されているが、この能力の背後にある内部メカニズムはいまだ不明である。
本稿では,LLMの内部動作に関する知見を提供し,言語間能力の向上のための基盤を提供する。
論文 参考訳(メタデータ) (2024-10-15T15:49:15Z) - Getting More from Less: Large Language Models are Good Spontaneous Multilingual Learners [67.85635044939836]
大きな言語モデル(LLM)は印象的な言語機能を示している。
本研究では,LLMの自然多言語アライメント改善について検討する。
質問翻訳データ(すなわち注釈付き回答なし)に基づいて学習したLLMは、英語と幅広い言語との整合を促進できることがわかった。
論文 参考訳(メタデータ) (2024-05-22T16:46:19Z) - Exploring Multilingual Concepts of Human Value in Large Language Models: Is Value Alignment Consistent, Transferable and Controllable across Languages? [34.38469832305664]
本稿では,AIの安全性の重要性から,人間の価値観に関する概念(すなわち,価値の概念)に焦点を当てる。
我々はまず,LLMにおける価値概念の存在を多言語形式で実証的に確認した。
これらの概念の言語間特性に関するさらなる分析は、言語資源の相違から生じる3つの特徴を明らかにしている。
論文 参考訳(メタデータ) (2024-02-28T07:18:39Z) - Language-Specific Neurons: The Key to Multilingual Capabilities in Large Language Models [117.20416338476856]
大規模言語モデル(LLM)は、特別にキュレートされた多言語並列コーパスで事前訓練されることなく、顕著な多言語機能を示す。
LLM内の言語特異的ニューロンを識別するための新しい検出手法である言語アクティベーション確率エントロピー(LAPE)を提案する。
以上の結果から,LLMが特定の言語を処理できる能力は,神経細胞のサブセットが少なすぎるためであることが示唆された。
論文 参考訳(メタデータ) (2024-02-26T09:36:05Z) - How Proficient Are Large Language Models in Formal Languages? An In-Depth Insight for Knowledge Base Question Answering [52.86931192259096]
知識ベース質問回答(KBQA)は,知識ベースにおける事実に基づいた自然言語質問への回答を目的としている。
最近の研究は、論理形式生成のための大規模言語モデル(LLM)の機能を活用して性能を向上させる。
論文 参考訳(メタデータ) (2024-01-11T09:27:50Z) - Probing LLMs for Joint Encoding of Linguistic Categories [10.988109020181563]
大規模言語モデル(LLM)における言語カテゴリーの合同符号化をテストするためのフレームワークを提案する。
関連音声(POS)クラスと異なる(POSクラスと関連する構文依存関係)言語階層の双方で共同符号化の証拠を見いだした。
論文 参考訳(メタデータ) (2023-10-28T12:46:40Z) - Cross-Lingual Ability of Multilingual Masked Language Models: A Study of
Language Structure [54.01613740115601]
本稿では,構成順序,構成,単語共起の3つの言語特性について検討する。
我々の主な結論は、構成順序と単語共起の寄与は限定的である一方、構成は言語間移動の成功にとってより重要であるということである。
論文 参考訳(メタデータ) (2022-03-16T07:09:35Z) - Discovering Representation Sprachbund For Multilingual Pre-Training [139.05668687865688]
多言語事前学習モデルから言語表現を生成し、言語分析を行う。
すべての対象言語を複数のグループにクラスタリングし、表現のスプラックバンドとして各グループに名前を付ける。
言語間ベンチマークで実験を行い、強いベースラインと比較して大幅な改善が達成された。
論文 参考訳(メタデータ) (2021-09-01T09:32:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。