論文の概要: Large Language Models are Easily Confused: A Quantitative Metric, Security Implications and Typological Analysis
- arxiv url: http://arxiv.org/abs/2410.13237v1
- Date: Thu, 17 Oct 2024 05:43:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-18 13:22:20.521882
- Title: Large Language Models are Easily Confused: A Quantitative Metric, Security Implications and Typological Analysis
- Title(参考訳): 大規模言語モデルは簡単に混乱する: 定量的メトリクス、セキュリティ含意、そしてタイポロジー分析
- Authors: Yiyi Chen, Qiongxiu Li, Russa Biswas, Johannes Bjerva,
- Abstract要約: 言語融合(Language Confusion)とは、大言語モデル(LLM)が所望の言語でもなく、文脈的に適切な言語でもテキストを生成する現象である。
我々は,この混乱を計測し定量化するために設計された,新しい計量であるLanguage Confusion Entropyを導入する。
- 参考スコア(独自算出の注目度): 5.029635172046762
- License:
- Abstract: Language Confusion is a phenomenon where Large Language Models (LLMs) generate text that is neither in the desired language, nor in a contextually appropriate language. This phenomenon presents a critical challenge in text generation by LLMs, often appearing as erratic and unpredictable behavior. We hypothesize that there are linguistic regularities to this inherent vulnerability in LLMs and shed light on patterns of language confusion across LLMs. We introduce a novel metric, Language Confusion Entropy, designed to directly measure and quantify this confusion, based on language distributions informed by linguistic typology and lexical variation. Comprehensive comparisons with the Language Confusion Benchmark (Marchisio et al., 2024) confirm the effectiveness of our metric, revealing patterns of language confusion across LLMs. We further link language confusion to LLM security, and find patterns in the case of multilingual embedding inversion attacks. Our analysis demonstrates that linguistic typology offers theoretically grounded interpretation, and valuable insights into leveraging language similarities as a prior for LLM alignment and security.
- Abstract(参考訳): 言語融合(Language Confusion)とは、大言語モデル(LLM)が所望の言語でもなく、文脈的に適切な言語でもテキストを生成する現象である。
この現象は、LLMによるテキスト生成において重要な課題を示し、しばしば不規則で予測不可能な振る舞いとして現れる。
我々は、LLMに固有の脆弱性には言語規則性があることを仮定し、LLMにまたがる言語混乱のパターンに光を当てた。
本稿では,言語型と語彙変化から得られる言語分布に基づいて,この混乱を直接測定・定量化するために設計された新しい計量であるLanguage Confusion Entropyを紹介する。
また,Language Confusion Benchmark ( Marchisio et al , 2024) と総合的に比較した結果, LLM間の言語混乱パターンが明らかとなった。
さらに,LLMのセキュリティに言語混乱を関連付け,多言語埋め込みインバージョン攻撃の際のパターンを見出す。
本分析は,言語型学が理論的に基礎的な解釈と,LLMのアライメントとセキュリティの先行として言語類似性を活用するための貴重な洞察を提供することを示す。
関連論文リスト
- Linguistics Theory Meets LLM: Code-Switched Text Generation via Equivalence Constrained Large Language Models [16.82812708514889]
1つの会話で2つ以上の言語を交互に交互に行うコードスイッチングは、自然言語処理(NLP)に特有の課題を提示する
既存の研究は構文的制約やニューラルジェネレーションに重点を置いており、言語理論を言語モデル(LLM)と統合して自然なコード変更テキストを生成する努力はほとんどない。
等価制約理論(ECT)とLLMを組み合わせた新しいフレームワークであるEZSwitchを導入する。
論文 参考訳(メタデータ) (2024-10-30T03:03:32Z) - Do Large Language Models Have an English Accent? Evaluating and Improving the Naturalness of Multilingual LLMs [13.558778781305998]
大規模言語モデル (LLM) は主に英語を基本言語として設計されている。
多言語である少数の人々でさえ、強い英語中心の偏見を示す傾向がある。
本稿では,多言語出力の語彙的および構文的自然性を評価するための新しい自動コーパスレベル指標を提案する。
論文 参考訳(メタデータ) (2024-10-21T12:34:17Z) - Converging to a Lingua Franca: Evolution of Linguistic Regions and Semantics Alignment in Multilingual Large Language Models [11.423589362950812]
大規模言語モデル(LLM)は、特に多言語文脈において顕著な性能を示した。
近年の研究では、LLMは、ある言語で学んだスキルを他の言語に伝達することができることが示唆されているが、この能力の背後にある内部メカニズムはいまだ不明である。
本稿では,LLMの内部動作に関する知見を提供し,言語間能力の向上のための基盤を提供する。
論文 参考訳(メタデータ) (2024-10-15T15:49:15Z) - Understanding and Mitigating Language Confusion in LLMs [76.96033035093204]
我々は,既存の英語および多言語プロンプトを用いた15の型的多様言語の評価を行った。
Llama Instruct と Mistral のモデルでは,言語的混乱の度合いが高いことがわかった。
言語混乱は,数発のプロンプト,多言語SFT,選好調整によって部分的に緩和できることがわかった。
論文 参考訳(メタデータ) (2024-06-28T17:03:51Z) - Crosslingual Capabilities and Knowledge Barriers in Multilingual Large Language Models [62.91524967852552]
大規模言語モデル(LLM)は、多言語コーパスの事前訓練のため、一般的に多言語である。
しかし、これらのモデルは言語間で対応する概念を関連付けることができ、効果的にクロスランガルなのでしょうか?
本研究は,言語横断的課題に関する6つの技術 LLM の評価を行った。
論文 参考訳(メタデータ) (2024-06-23T15:15:17Z) - Language-Specific Neurons: The Key to Multilingual Capabilities in Large Language Models [117.20416338476856]
大規模言語モデル(LLM)は、特別にキュレートされた多言語並列コーパスで事前訓練されることなく、顕著な多言語機能を示す。
LLM内の言語特異的ニューロンを識別するための新しい検出手法である言語アクティベーション確率エントロピー(LAPE)を提案する。
以上の結果から,LLMが特定の言語を処理できる能力は,神経細胞のサブセットが少なすぎるためであることが示唆された。
論文 参考訳(メタデータ) (2024-02-26T09:36:05Z) - How Proficient Are Large Language Models in Formal Languages? An In-Depth Insight for Knowledge Base Question Answering [52.86931192259096]
知識ベース質問回答(KBQA)は,知識ベースにおける事実に基づいた自然言語質問への回答を目的としている。
最近の研究は、論理形式生成のための大規模言語モデル(LLM)の機能を活用して性能を向上させる。
論文 参考訳(メタデータ) (2024-01-11T09:27:50Z) - Language models are not naysayers: An analysis of language models on
negation benchmarks [58.32362243122714]
我々は,次世代自動回帰言語モデルによる否定処理能力の評価を行った。
LLMには,否定の存在に対する感受性,否定の語彙的意味を捉える能力の欠如,否定下での推論の失敗など,いくつかの制限があることが示されている。
論文 参考訳(メタデータ) (2023-06-14T01:16:37Z) - Shortcut Learning of Large Language Models in Natural Language
Understanding [119.45683008451698]
大規模言語モデル(LLM)は、一連の自然言語理解タスクにおいて最先端のパフォーマンスを達成した。
予測のショートカットとしてデータセットのバイアスやアーティファクトに依存するかも知れません。
これは、その一般化性と敵対的堅牢性に大きな影響を与えている。
論文 参考訳(メタデータ) (2022-08-25T03:51:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。