論文の概要: Unsupervised Reward-Driven Image Segmentation in Automated Scanning Transmission Electron Microscopy Experiments
- arxiv url: http://arxiv.org/abs/2409.12462v2
- Date: Fri, 20 Sep 2024 13:44:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-07 14:41:29.323846
- Title: Unsupervised Reward-Driven Image Segmentation in Automated Scanning Transmission Electron Microscopy Experiments
- Title(参考訳): 自動走査透過電子顕微鏡実験における教師なし逆方向画像分割
- Authors: Kamyar Barakati, Utkarsh Pratiush, Austin C. Houston, Gerd Duscher, Sergei V. Kalinin,
- Abstract要約: 走査透過電子顕微鏡(STEM)における自動実験は、人間の解釈、意思決定、サイト選択分光法、原子操作のためのデータ表現を最適化するために、高速な画像分割を必要とする。
本稿では,STEMにおけるオンザフライ画像解析のための報酬駆動最適化ワークフローの運用とベンチマークを行う。
この教師なしのアプローチは、人間のラベルに依存しておらず、完全に説明可能であるため、はるかに堅牢である。
- 参考スコア(独自算出の注目度): 0.22795086293129713
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Automated experiments in scanning transmission electron microscopy (STEM) require rapid image segmentation to optimize data representation for human interpretation, decision-making, site-selective spectroscopies, and atomic manipulation. Currently, segmentation tasks are typically performed using supervised machine learning methods, which require human-labeled data and are sensitive to out-of-distribution drift effects caused by changes in resolution, sampling, or beam shape. Here, we operationalize and benchmark a recently proposed reward-driven optimization workflow for on-the fly image analysis in STEM. This unsupervised approach is much more robust, as it does not rely on human labels and is fully explainable. The explanatory feedback can help the human to verify the decision making and potentially tune the model by selecting the position along the Pareto frontier of reward functions. We establish the timing and effectiveness of this method, demonstrating its capability for real-time performance in high-throughput and dynamic automated STEM experiments. The reward driven approach allows to construct explainable robust analysis workflows and can be generalized to a broad range of image analysis tasks in electron and scanning probe microscopy and chemical imaging.
- Abstract(参考訳): 走査透過電子顕微鏡(STEM)における自動実験は、人間の解釈、意思決定、サイト選択分光法、原子操作のためのデータ表現を最適化するために、高速な画像分割を必要とする。
現在、セグメンテーションタスクは典型的には、人間のラベル付きデータを必要とし、解像度、サンプリング、ビーム形状の変化に起因する分布外ドリフト効果に敏感な教師付き機械学習手法を用いて実行される。
本稿では,STEMにおけるオンザフライ画像解析のための報酬駆動最適化ワークフローの運用とベンチマークを行う。
この教師なしのアプローチは、人間のラベルに依存しておらず、完全に説明可能であるため、はるかに堅牢である。
説明的フィードバックは、人間が意思決定を検証し、報酬関数のパレートフロンティアに沿って位置を選択することでモデルを調整するのに役立つ。
本手法のタイミングと有効性を確立し,高スループットおよび動的自動STEM実験におけるリアルタイム性能を示す。
報酬駆動型アプローチは、説明可能な堅牢な分析ワークフローの構築を可能にし、電子顕微鏡や走査型プローブ顕微鏡、化学画像の幅広い画像解析タスクに一般化することができる。
関連論文リスト
- Reward driven workflows for unsupervised explainable analysis of phases and ferroic variants from atomically resolved imaging data [14.907891992968361]
本研究では,教師なしML手法の鍵ハイパーパラメータを最適化するために,報酬駆動型アプローチが利用できることを示す。
このアプローチにより、特定の物理的な振る舞いに最も適したローカルな記述子を見つけることができる。
また、変分オートエンコーダ(VAE)を介して変動の構造因子を乱すよう誘導される報酬も拡張する。
論文 参考訳(メタデータ) (2024-11-19T16:18:20Z) - Foundational Model for Electron Micrograph Analysis: Instruction-Tuning Small-Scale Language-and-Vision Assistant for Enterprise Adoption [0.0]
半導体電子顕微鏡画像(MAEMI)解析のための小型フレームワークについて紹介する。
我々は、顕微鏡画像解析において、大規模なマルチモーダルモデルを用いて、カスタマイズされた命令追従データセットを生成する。
知識蒸留により,より大規模なモデルからより小さなモデルへの知識伝達を行い,視覚的質問応答タスクにおいて,より小さなモデルの精度を向上させる。
論文 参考訳(メタデータ) (2024-08-23T17:42:11Z) - Efficient Visual State Space Model for Image Deblurring [83.57239834238035]
畳み込みニューラルネットワーク(CNN)とビジョントランスフォーマー(ViT)は、画像復元において優れた性能を発揮している。
本稿では,画像のデブロアに対する簡易かつ効果的な視覚状態空間モデル(EVSSM)を提案する。
論文 参考訳(メタデータ) (2024-05-23T09:13:36Z) - Deep Domain Adaptation: A Sim2Real Neural Approach for Improving Eye-Tracking Systems [80.62854148838359]
眼球画像のセグメンテーションは、最終視線推定に大きな影響を及ぼす眼球追跡の重要なステップである。
対象視線画像と合成訓練データとの重なり合いを測定するために,次元還元法を用いている。
提案手法は,シミュレーションと実世界のデータサンプルの相違に対処する際の頑健で,性能が向上する。
論文 参考訳(メタデータ) (2024-03-23T22:32:06Z) - Learning and Controlling Silicon Dopant Transitions in Graphene using
Scanning Transmission Electron Microscopy [58.51812955462815]
単層炭素原子上のシリコン原子の遷移ダイナミクスを機械学習で決定する手法を提案する。
データサンプルは、ニューラルネットワークをトレーニングして遷移確率を予測するために、シンボリック表現を生成するために処理され、フィルタリングされる。
これらの学習された遷移ダイナミクスを利用すれば、格子全体に1つのシリコン原子を誘導し、あらかじめ決定された目標目的地へと導くことができる。
論文 参考訳(メタデータ) (2023-11-21T21:51:00Z) - Self-Supervised Neuron Segmentation with Multi-Agent Reinforcement
Learning [53.00683059396803]
マスク画像モデル(MIM)は,マスク画像から元の情報を復元する簡便さと有効性から広く利用されている。
本稿では、強化学習(RL)を利用して最適な画像マスキング比とマスキング戦略を自動検索する決定に基づくMIMを提案する。
本手法は,ニューロン分節の課題において,代替自己監督法に対して有意な優位性を有する。
論文 参考訳(メタデータ) (2023-10-06T10:40:46Z) - AI-assisted Automated Workflow for Real-time X-ray Ptychography Data
Analysis via Federated Resources [2.682578132719034]
大規模リモートコンピューティングリソースと組込みGPUプラットフォームをエッジに使用して,X線写真のために収集したデータのAI/ML高速化リアルタイム解析を可能にする,エンドツーエンドの自動ワークフローを提案する。
論文 参考訳(メタデータ) (2023-04-09T19:11:04Z) - The Preliminary Results on Analysis of TAIGA-IACT Images Using
Convolutional Neural Networks [68.8204255655161]
本研究の目的は,AIGA-IACTに設定された課題を解決するための機械学習アプリケーションの可能性を検討することである。
The method of Convolutional Neural Networks (CNN) was applied to process and analysis Monte-Carlo eventssimulated with CORSIKA。
論文 参考訳(メタデータ) (2021-12-19T15:17:20Z) - A parameter refinement method for Ptychography based on Deep Learning
concepts [55.41644538483948]
伝播距離、位置誤差、部分的コヒーレンスにおける粗いパラメトリゼーションは、しばしば実験の生存性を脅かす。
最新のDeep Learningフレームワークは、セットアップの不整合を自律的に補正するために使用され、ポチコグラフィーの再構築の質が向上する。
我々は,elettra シンクロトロン施設のツインミックビームラインで取得した合成データセットと実データの両方でシステムをテストした。
論文 参考訳(メタデータ) (2021-05-18T10:15:17Z) - Automated and Autonomous Experiment in Electron and Scanning Probe
Microscopy [0.0]
連続画像形成機構を有するイメージング手法における自動実験(AE)への主要な経路の解析を目指しています。
自動実験は一般分野の知識のより広い文脈で議論されるべきであり、実験の結果、双方が実験を通知し、増大させる。
論文 参考訳(メタデータ) (2021-03-22T20:24:41Z) - Ensemble learning and iterative training (ELIT) machine learning:
applications towards uncertainty quantification and automated experiment in
atom-resolved microscopy [0.0]
深層学習は、画像の分野をまたいだ迅速な特徴抽出の技法として登場した。
本稿では,原子分解電子顕微鏡における特徴抽出における深層学習の応用について検討する。
このアプローチは、深層学習解析に不確実性をもたらし、また、画像条件の変化によるネットワークの再訓練が人間のオペレータやアンサンブルからのネットワークの選択に代えて、分散のずれを補うための自動実験的検出を可能にする。
論文 参考訳(メタデータ) (2021-01-21T05:29:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。