論文の概要: Model calibration using a parallel differential evolution algorithm in computational neuroscience: simulation of stretch induced nerve deficit
- arxiv url: http://arxiv.org/abs/2409.12567v1
- Date: Thu, 19 Sep 2024 08:40:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-07 14:19:13.614744
- Title: Model calibration using a parallel differential evolution algorithm in computational neuroscience: simulation of stretch induced nerve deficit
- Title(参考訳): 計算神経科学における並列微分進化アルゴリズムを用いたモデル校正-ストレッチ誘発神経障害のシミュレーション
- Authors: Antonio LaTorre, Man Ting Kwong, Julián A. García-Grajales, Riyi Shi, Antoine Jérusalem, José-María Peña,
- Abstract要約: 実験結果に対して校正する必要がある自由パラメータを複数有する複合機械電気生理学的モデルを用いる。
キャリブレーションは進化的アルゴリズム(差分進化, DE)を用いて実施され、6つの異なる損傷事例におけるパラメータのそれぞれの構成を評価する必要がある。
我々は,利用可能な計算能力をすべて活用して,マルチプロセッサ上で動作するOpenMPに基づく並列実装を開発した。
- 参考スコア(独自算出の注目度): 1.1026741683718058
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Neuronal damage, in the form of both brain and spinal cord injuries, is one of the major causes of disability and death in young adults worldwide. One way to assess the direct damage occurring after a mechanical insult is the simulation of the neuronal cells functional deficits following the mechanical event. In this study, we use a coupled mechanical electrophysiological model with several free parameters that are required to be calibrated against experimental results. The calibration is carried out by means of an evolutionary algorithm (differential evolution, DE) that needs to evaluate each configuration of parameters on six different damage cases, each of them taking several minutes to compute. To minimise the simulation time of the parameter tuning for the DE, the stretch of one unique fixed-diameter axon with a simplified triggering process is used to speed up the calculations. The model is then leveraged for the parameter optimization of the more realistic bundle of independent axons, an impractical configuration to run on a single processor computer. To this end, we have developed a parallel implementation based on OpenMP that runs on a multi-processor taking advantage of all the available computational power. The parallel DE algorithm obtains good results, outperforming the best effort achieved by published manual calibration, in a fraction of the time. While not being able to fully capture the experimental results, the resulting nerve model provides a complex averaging framework for nerve damage simulation able to simulate gradual axonal functional alteration in a bundle.
- Abstract(参考訳): 神経損傷は、脳損傷と脊髄損傷の両方の形で、世界中の若者の障害と死の主な原因の1つである。
機械的侮辱後の直接的な損傷を評価する1つの方法は、機械的事象後の神経細胞の機能的障害のシミュレーションである。
本研究では,実験結果に対する校正に必要な自由パラメータを複数有する複合機械電気生理学的モデルを用いて検討した。
キャリブレーションは進化的アルゴリズム (差分進化, DE) を用いて実行され、6つの異なる損傷ケースにおけるパラメータのそれぞれの構成を評価する必要がある。
DEのパラメータチューニングのシミュレーション時間を最小化するために、簡単なトリガ処理による1つのユニークな固定径軸索のストレッチを用いて計算を高速化する。
モデルは、より現実的な独立した軸索のバンドルのパラメータ最適化に利用され、これは単一のプロセッサコンピュータ上で実行するための非現実的な構成である。
そこで我々は,利用可能な計算パワーをすべて活用して,マルチプロセッサ上で動作するOpenMPに基づく並列実装を開発した。
並列DEアルゴリズムは,手動キャリブレーションによって達成される最善を,わずかな時間で達成し,良好な結果が得られる。
実験結果を完全に把握できないが、結果として得られる神経モデルは、束内の徐々に軸索機能の変化をシミュレートできる神経損傷シミュレーションのための複雑な平均化の枠組みを提供する。
関連論文リスト
- Multi-Parameter Molecular MRI Quantification using Physics-Informed Self-Supervised Learning [0.0]
生体物理モデルフィッティングは、生理的信号や画像から定量的パラメータを得る上で重要な役割を果たしている。
本稿では,常微分方程式(ODE)モデルを用いてパラメータ抽出逆問題の解法を提案する。
これは、数値ODEソルバをステップワイズ解析として機能させ、自動微分に基づく最適化と互換性を持たせることで実現される。
論文 参考訳(メタデータ) (2024-11-10T12:40:33Z) - A Realistic Simulation Framework for Analog/Digital Neuromorphic Architectures [73.65190161312555]
ARCANAは、混合信号ニューロモルフィック回路の特性を考慮に入れたスパイクニューラルネットワークシミュレータである。
その結果,ソフトウェアでトレーニングしたスパイクニューラルネットワークの挙動を,信頼性の高い推定結果として提示した。
論文 参考訳(メタデータ) (2024-09-23T11:16:46Z) - A Multi-Grained Symmetric Differential Equation Model for Learning Protein-Ligand Binding Dynamics [73.35846234413611]
薬物発見において、分子動力学(MD)シミュレーションは、結合親和性を予測し、輸送特性を推定し、ポケットサイトを探索する強力なツールを提供する。
我々は,数値MDを容易にし,タンパク質-リガンド結合ダイナミクスの正確なシミュレーションを提供する,最初の機械学習サロゲートであるNeuralMDを提案する。
従来の数値MDシミュレーションと比較して1K$times$ Speedupを実現することにより,NeuralMDの有効性と有効性を示す。
論文 参考訳(メタデータ) (2024-01-26T09:35:17Z) - Addressing the speed-accuracy simulation trade-off for adaptive spiking
neurons [0.0]
本稿では,適応統合火災モデル(ALIF)をアルゴリズム的に再解釈する。
合成ベンチマークで小さなDTを用いて50ドル以上のトレーニングスピードアップを得る。
また、我々のモデルが皮質ニューロンの電気生理学的記録を迅速かつ正確に適合させる方法についても紹介する。
論文 参考訳(メタデータ) (2023-11-19T18:21:45Z) - Gradual Optimization Learning for Conformational Energy Minimization [69.36925478047682]
ニューラルネットワークによるエネルギー最小化のためのGradual Optimization Learning Framework(GOLF)は、必要な追加データを大幅に削減する。
GOLFでトレーニングしたニューラルネットワークは,種々の薬物様分子のベンチマークにおいて,オラクルと同等に動作することを示す。
論文 参考訳(メタデータ) (2023-11-05T11:48:08Z) - The Expressive Leaky Memory Neuron: an Efficient and Expressive Phenomenological Neuron Model Can Solve Long-Horizon Tasks [64.08042492426992]
本稿では,脳皮質ニューロンの生物学的モデルであるExpressive Memory(ELM)ニューロンモデルを紹介する。
ELMニューロンは、上記の入力-出力関係を1万以下のトレーニング可能なパラメータと正確に一致させることができる。
本稿では,Long Range Arena(LRA)データセットなど,時間構造を必要とするタスクで評価する。
論文 参考訳(メタデータ) (2023-06-14T13:34:13Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
本稿では,NeuralStaggerと呼ばれる一般化手法を提案する。
元の学習タスクをいくつかの粗い解像度のサブタスクに分解する。
本稿では,2次元および3次元流体力学シミュレーションにおけるNeuralStaggerの適用例を示す。
論文 参考訳(メタデータ) (2023-02-20T19:36:52Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
偏微分方程式 (PDE) を解くことは、多くのプロセスがPDEの観点でモデル化できるため、科学の多くの分野において不可欠である。
最近の数値解法では、基礎となる方程式を手動で離散化するだけでなく、分散コンピューティングのための高度で調整されたコードも必要である。
偏微分方程式, 物理インフォームドニューラルネットワーク(PINN)に対する連続メッシュフリーニューラルネットワークの適用性について検討する。
本稿では,解析解に関するGatedPINNの精度と,スペクトル解法などの最先端数値解法について論じる。
論文 参考訳(メタデータ) (2020-09-08T13:26:51Z) - Designing Accurate Emulators for Scientific Processes using
Calibration-Driven Deep Models [33.935755695805724]
Learn-by-Calibrating (LbC)は、科学応用においてエミュレータを設計するための新しいディープラーニングアプローチである。
また,LbCは広く適応された損失関数の選択に対して,一般化誤差を大幅に改善することを示した。
LbCは、小さなデータレギュレータでも高品質なエミュレータを実現し、さらに重要なことは、明確な事前条件なしで固有のノイズ構造を復元する。
論文 参考訳(メタデータ) (2020-05-05T16:54:11Z) - Leveraging Vision and Kinematics Data to Improve Realism of Biomechanic
Soft-tissue Simulation for Robotic Surgery [13.657060682152409]
ロボット内視鏡手術で得られたライブデータは,不正確なFEMシミュレーション結果の修正にどのように用いられるかを検討する。
我々はオープンソースのda Vinciオペレーショナルシステムを用いて,ソフトチップのファントムを探索し,シミュレーションでインタラクションを再現する。
予測メッシュ位置と測定点雲との差を補正するために,ネットワークをトレーニングする。
論文 参考訳(メタデータ) (2020-03-14T00:16:08Z) - VOR Adaptation on a Humanoid iCub Robot Using a Spiking Cerebellar Model [0.0]
我々は、本物のロボット体(iCub)を操作することができる適応リアルタイム制御ループに、スパイク小脳モデルを組み込む。
本研究の目的は、小脳神経基質と分散可塑性の組み合わせが小脳神経活動を形作って運動適応を仲介する方法を明らかにすることである。
論文 参考訳(メタデータ) (2020-03-03T09:48:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。