Industrial 300$\,$mm wafer processed spin qubits in natural silicon/silicon-germanium
- URL: http://arxiv.org/abs/2409.12731v2
- Date: Fri, 20 Sep 2024 07:53:57 GMT
- Title: Industrial 300$\,$mm wafer processed spin qubits in natural silicon/silicon-germanium
- Authors: Thomas Koch, Clement Godfrin, Viktor Adam, Julian Ferrero, Daniel Schroller, Noah Glaeser, Stefan Kubicek, Ruoyu Li, Roger Loo, Shana Massar, George Simion, Danny Wan, Kristiaan De Greve, Wolfgang Wernsdorfer,
- Abstract summary: Quantum dots hosted in a natural Si/SiGe heterostructure fully fabricated by an industrial 300$,$mm semiconductor wafer process line.
We report charge noise values below 2$,mathrmmu eV/sqrtHz$, spin relaxation times of over 1$,mathrmmu s$ and 50$,mathrmmu s$ respectively, for quantum wells grown using natural silicon.
- Score: 0.8219694762753349
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The realisation of an universal quantum computer will require the operation of thousands to millions of qubits. The possibility of using existing industrial semiconductor fabrication techniques and infrastructure for up-scaling and reproducibility makes silicon based spin qubits one of the most promising platforms to achieve this goal. The implementation of the up to now largest semiconductor based quantum processor was realized in a silicon/silicon-germanium heterostructure known for its low charge noise, long qubit coherence times and fast driving speeds, but the high structural complexity creates challenges for industrial implementations. Here we demonstrate quantum dots hosted in a natural Si/SiGe heterostructure fully fabricated by an industrial 300$\,$mm semiconductor wafer process line from heterostructure growth to Co micromagnet monolithic integration. We report charge noise values below 2$\,\mathrm{\mu eV/\sqrt{Hz}}$, spin relaxation times of over 1$\,$s and coherence times $T_2^*$ and $T_2^H$ of 1$\,\mathrm{\mu s}$ and 50$\,\mathrm{\mu s}$ respectively, for quantum wells grown using natural silicon. Further, we achieve Rabi frequencies up to 5$\,$MHz and single qubit gate fidelities above 99$\,\%$. In addition to scalability, the high reproducibility of the 300$\,$mm processes enables the deterministic study of qubit metric dependencies on process parameters, which is essential for optimising qubit quality.
Related papers
- A 300 mm foundry silicon spin qubit unit cell exceeding 99% fidelity in all operations [0.2398431050362945]
Fabrication of quantum processors in advanced 300 mm wafer-scale complementary metal-oxide-semiconductor (CMOS) foundries provides a unique scaling pathway towards commercially viable quantum computing.
Here, we show precise qubit operation of a silicon two-qubit device made in a 300 mm semiconductor processing line.
arXiv Detail & Related papers (2024-10-21T02:18:35Z) - Towards large-scale quantum optimization solvers with few qubits [59.63282173947468]
We introduce a variational quantum solver for optimizations over $m=mathcalO(nk)$ binary variables using only $n$ qubits, with tunable $k>1$.
We analytically prove that the specific qubit-efficient encoding brings in a super-polynomial mitigation of barren plateaus as a built-in feature.
arXiv Detail & Related papers (2024-01-17T18:59:38Z) - Scalable Atomic Arrays for Spin-Based Quantum Computers in Silicon [25.271311916546793]
We demonstrate and integrate multiple strategies to manufacture scale-up donor-based quantum computers.
We use $31$PF_2$ molecule implants to triple the placement certainty compared to $31$P ions.
Similar confidence is retained by implanting heavier atoms such as $123$Sb and $209$Bi.
arXiv Detail & Related papers (2023-09-18T09:56:50Z) - Multi-module microwave assembly for fast read-out and charge noise characterization of silicon quantum dots [0.6819010383838326]
We develop a superconductor-semiconductor multi-module microwave assembly to demonstrate charge state readout at the state-of-the-art.
The modular microwave circuitry presented here can be directly utilized in conjunction with other quantum device to improve the readout performance.
arXiv Detail & Related papers (2023-04-26T10:52:34Z) - Field-deployable Quantum Memory for Quantum Networking [62.72060057360206]
We present a quantum memory engineered to meet real-world deployment and scaling challenges.
The memory technology utilizes a warm rubidium vapor as the storage medium, and operates at room temperature.
We demonstrate performance specifications of high-fidelity retrieval (95%) and low operation error $(10-2)$ at a storage time of 160 $mu s$ for single-photon level quantum memory operations.
arXiv Detail & Related papers (2022-05-26T00:33:13Z) - Compact superconducting microwave resonators based on Al-AlOx-Al
capacitor [56.00511651498414]
resonators based on aluminum oxide -- aluminum ($mathrmAl/AlO_x/Al$) parallel-plate capacitors.
The size of the resonators is only 0.04$mathrmmm2$, which is more than one order smaller than the typical size of coplanar resonators.
arXiv Detail & Related papers (2022-03-17T20:11:53Z) - Unimon qubit [42.83899285555746]
Superconducting qubits are one of the most promising candidates to implement quantum computers.
Here, we introduce and demonstrate a superconducting-qubit type, the unimon, which combines the desired properties of high non-linearity, full insensitivity to dc charge noise, insensitivity to flux noise, and a simple structure consisting only of a single Josephson junction in a resonator.
arXiv Detail & Related papers (2022-03-11T12:57:43Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - Qubits made by advanced semiconductor manufacturing [0.0]
Full-scale quantum computers require the integration of millions of quantum bits.
The promise of leveraging industrial semiconductor manufacturing to meet this requirement has fueled the pursuit of quantum computing in silicon quantum dots.
Here, we demonstrate quantum dots fabricated in a 300 mm semiconductor manufacturing facility using all-optical lithography and fully industrial processing.
arXiv Detail & Related papers (2021-01-29T15:41:39Z) - Conditional quantum operation of two exchange-coupled single-donor spin
qubits in a MOS-compatible silicon device [48.7576911714538]
Silicon nanoelectronic devices can host single-qubit quantum logic operations with fidelity better than 99.9%.
For the spins of an electron bound to a single donor atom, introduced in the silicon by ion implantation, the quantum information can be stored for nearly 1 second.
Here we demonstrate the conditional, coherent control of an electron spin qubit in an exchange-coupled pair of $31$P donors implanted in silicon.
arXiv Detail & Related papers (2020-06-08T11:25:16Z) - Communication Cost of Quantum Processes [49.281159740373326]
A common scenario in distributed computing involves a client who asks a server to perform a computation on a remote computer.
An important problem is to determine the minimum amount of communication needed to specify the desired computation.
We analyze the total amount of (classical and quantum) communication needed by a server in order to accurately execute a quantum process chosen by a client.
arXiv Detail & Related papers (2020-02-17T08:51:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.