論文の概要: GStex: Per-Primitive Texturing of 2D Gaussian Splatting for Decoupled Appearance and Geometry Modeling
- arxiv url: http://arxiv.org/abs/2409.12954v2
- Date: Tue, 29 Oct 2024 18:31:39 GMT
- ステータス: エラー
- システム内更新日: 2024-10-31 13:44:04.934455
- Title: GStex: Per-Primitive Texturing of 2D Gaussian Splatting for Decoupled Appearance and Geometry Modeling
- Title(参考訳):
- Authors: Victor Rong, Jingxiang Chen, Sherwin Bahmani, Kiriakos N. Kutulakos, David B. Lindell,
- Abstract要約: 要約中
- 参考スコア(独自算出の注目度):
- License:
- Abstract: Gaussian splatting has demonstrated excellent performance for view synthesis and scene reconstruction. The representation achieves photorealistic quality by optimizing the position, scale, color, and opacity of thousands to millions of 2D or 3D Gaussian primitives within a scene. However, since each Gaussian primitive encodes both appearance and geometry, these attributes are strongly coupled--thus, high-fidelity appearance modeling requires a large number of Gaussian primitives, even when the scene geometry is simple (e.g., for a textured planar surface). We propose to texture each 2D Gaussian primitive so that even a single Gaussian can be used to capture appearance details. By employing per-primitive texturing, our appearance representation is agnostic to the topology and complexity of the scene's geometry. We show that our approach, GStex, yields improved visual quality over prior work in texturing Gaussian splats. Furthermore, we demonstrate that our decoupling enables improved novel view synthesis performance compared to 2D Gaussian splatting when reducing the number of Gaussian primitives, and that GStex can be used for scene appearance editing and re-texturing.
- Abstract(参考訳):
関連論文リスト
- Quadratic Gaussian Splatting for Efficient and Detailed Surface Reconstruction [7.500927135156425]
Quadratic Gaussian Splatting (QGS) は、円盤を二次曲面に置き換える新しい方法である。
QGSは、通常の一貫性項を導くために空間曲率を描画し、過剰な平滑化を効果的に低減する。
私たちのコードはオープンソースとしてリリースされます。
論文 参考訳(メタデータ) (2024-11-25T13:55:00Z) - GPS-Gaussian+: Generalizable Pixel-wise 3D Gaussian Splatting for Real-Time Human-Scene Rendering from Sparse Views [67.34073368933814]
スパースビューカメラ設定下での高解像度画像レンダリングのための一般化可能なガウススプラッティング手法を提案する。
我々は,人間のみのデータや人景データに基づいてガウスパラメータ回帰モジュールをトレーニングし,深度推定モジュールと共同で2次元パラメータマップを3次元空間に引き上げる。
いくつかのデータセットに対する実験により、我々の手法はレンダリング速度を超越しながら最先端の手法より優れていることが示された。
論文 参考訳(メタデータ) (2024-11-18T08:18:44Z) - Structure Consistent Gaussian Splatting with Matching Prior for Few-shot Novel View Synthesis [28.3325478008559]
SCGaussian, structure Consistent Gaussian Splatting method using matching priors to learn 3D consistent scene structure。
シーン構造を2つの折り畳みで最適化する: 幾何学の描画とより重要なのは、ガウス原始体の位置である。
前方, 周囲, 複雑な大規模シーンにおける実験により, 最先端性能と高効率性によるアプローチの有効性が示された。
論文 参考訳(メタデータ) (2024-11-06T03:28:06Z) - DreamMesh4D: Video-to-4D Generation with Sparse-Controlled Gaussian-Mesh Hybrid Representation [10.250715657201363]
本稿では,メッシュ表現と幾何スキン技術を組み合わせた新しいフレームワークDreamMesh4Dを紹介し,モノクロビデオから高品質な4Dオブジェクトを生成する。
我々の手法は現代のグラフィックパイプラインと互換性があり、3Dゲームや映画産業におけるその可能性を示している。
論文 参考訳(メタデータ) (2024-10-09T10:41:08Z) - HiSplat: Hierarchical 3D Gaussian Splatting for Generalizable Sparse-View Reconstruction [46.269350101349715]
HiSplatは、一般化可能な3Dガウススプラッティングのための新しいフレームワークである。
階層的な3Dガウスを粗大な戦略で生成する。
これにより、再構築品質とデータセット間の一般化が大幅に向上する。
論文 参考訳(メタデータ) (2024-10-08T17:59:32Z) - Dynamic Gaussian Marbles for Novel View Synthesis of Casual Monocular Videos [58.22272760132996]
既存の4次元ガウス法は単分子配置が制約されていないため、この設定で劇的に失敗することを示す。
単分子配置の難易度を目標とした3つのコア修正からなる動的ガウス大理石を提案する。
Nvidia Dynamic ScenesデータセットとDyCheck iPhoneデータセットを評価し,Gaussian Marblesが他のGaussianベースラインを著しく上回っていることを示す。
論文 参考訳(メタデータ) (2024-06-26T19:37:07Z) - Gaussian Opacity Fields: Efficient Adaptive Surface Reconstruction in Unbounded Scenes [50.92217884840301]
Gaussian Opacity Fields (GOF)は、シーンにおける効率的で高品質で適応的な表面再構成のための新しいアプローチである。
GOFは3Dガウスのレイトレーシングに基づくボリュームレンダリングに由来する。
GOFは、表面再構成と新しいビュー合成において、既存の3DGSベースの手法を超越している。
論文 参考訳(メタデータ) (2024-04-16T17:57:19Z) - 2D Gaussian Splatting for Geometrically Accurate Radiance Fields [50.056790168812114]
3D Gaussian Splatting (3DGS)は近年,高画質の新規ビュー合成と高速レンダリングを実現し,放射界再構成に革命をもたらした。
多視点画像から幾何学的精度の高い放射場をモデル化・再構成するための新しいアプローチである2DGS(2D Gaussian Splatting)を提案する。
競合する外観品質、高速トレーニング速度、リアルタイムレンダリングを維持しつつ、ノイズフリーかつ詳細な幾何学的再構成を可能にする。
論文 参考訳(メタデータ) (2024-03-26T17:21:24Z) - GVGEN: Text-to-3D Generation with Volumetric Representation [89.55687129165256]
3Dガウススプラッティングは、高速で高品質なレンダリング機能で知られる3D再構成と生成のための強力な技術として登場した。
本稿では,テキスト入力から3次元ガウス表現を効率的に生成する新しい拡散型フレームワークGVGENを提案する。
論文 参考訳(メタデータ) (2024-03-19T17:57:52Z) - Mesh-based Gaussian Splatting for Real-time Large-scale Deformation [58.18290393082119]
ユーザがリアルタイムで大きな変形で暗黙の表現を直接変形または操作することは困難である。
我々は,インタラクティブな変形を可能にする新しいGSベースの手法を開発した。
提案手法は,高いフレームレートで良好なレンダリング結果を維持しつつ,高品質な再構成と効率的な変形を実現する。
論文 参考訳(メタデータ) (2024-02-07T12:36:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。