$\textit{SKIntern}$: Internalizing Symbolic Knowledge for Distilling Better CoT Capabilities into Small Language Models
- URL: http://arxiv.org/abs/2409.13183v1
- Date: Fri, 20 Sep 2024 03:23:20 GMT
- Title: $\textit{SKIntern}$: Internalizing Symbolic Knowledge for Distilling Better CoT Capabilities into Small Language Models
- Authors: Huanxuan Liao, Shizhu He, Yupu Hao, Xiang Li, Yuanzhe Zhang, Kang Liu, Jun Zhao,
- Abstract summary: Small Language Models (SLMs) are attracting attention due to the high computational demands and privacy concerns.
We introduce $textitSKIntern$, an innovative approach that empowers SLMs to internalize symbolic knowledge.
- Score: 27.07695214182334
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Small Language Models (SLMs) are attracting attention due to the high computational demands and privacy concerns of Large Language Models (LLMs). Some studies fine-tune SLMs using Chains of Thought (CoT) data distilled from LLMs, aiming to enhance their reasoning ability. Furthermore, Some CoT distillation methods introduce external symbolic knowledge into the generation process to improve the limited knowledge memory, reasoning ability and out-of-domain (OOD) generalization of SLMs. However, the introduction of symbolic knowledge increases computational overhead and introduces potential noise. In this paper, we introduce $\textit{SKIntern}$, an innovative approach that empowers SLMs to internalize symbolic knowledge and few-shot examples gradually through a progressive fine-tuning process, guided by a predefined linear decay schedule under curriculum learning. By efficiently internalizing knowledge, $\textit{SKIntern}$ reduces computational overhead and speeds up the reasoning process by focusing solely on the question during inference. It outperforms state-of-the-art baselines by over 5\%, while reducing inference costs (measured in FLOPs) by up to $4\times$ across a wide range of SLMs in both in-domain (ID) and out-of-domain (OOD) tasks. Our code will be available at \url{https://github.com/Xnhyacinth/SKIntern}.
Related papers
- Neural-Symbolic Collaborative Distillation: Advancing Small Language Models for Complex Reasoning Tasks [30.572064185770298]
We propose a novel knowledge distillation method for learning the complex reasoning abilities of Large Language Models (LLMs)
NesyCD distills the general capabilities and specialized knowledge in LLMs using different manners.
Our experiments show that NesyCD significantly boosts SLMs' complex reasoning performance on in-domain (BBH, GSM8K) and out-of-domain (AGIEval, ARC) datasets.
arXiv Detail & Related papers (2024-09-20T04:17:13Z) - Great Memory, Shallow Reasoning: Limits of $k$NN-LMs [71.73611113995143]
$k$NN-LMs, which integrate retrieval with next-word prediction, have demonstrated strong performance in language modeling.
We ask whether this improved ability to recall information really translates into downstream abilities.
arXiv Detail & Related papers (2024-08-21T17:59:05Z) - Soft Prompting for Unlearning in Large Language Models [11.504012974208466]
This work focuses on investigating machine unlearning for Large Language Models motivated by data protection regulations.
We propose a framework textbfSoft textbfPrompting for textbfUntextbflearning (SPUL)
We conduct a rigorous evaluation of the proposed method and our results indicate that SPUL can significantly improve the trade-off between utility and forgetting.
arXiv Detail & Related papers (2024-06-17T19:11:40Z) - Refiner: Restructure Retrieval Content Efficiently to Advance Question-Answering Capabilities [30.1331670544648]
Large Language Models (LLMs) are limited by their parametric knowledge, leading to hallucinations in knowledge-extensive tasks.
We propose $textitRefiner$, an end-to-end extract-and-restructure paradigm that operates in the post-retrieval process of RAG.
arXiv Detail & Related papers (2024-06-17T09:25:10Z) - A Training-free Sub-quadratic Cost Transformer Model Serving Framework With Hierarchically Pruned Attention [43.211427581302715]
We propose Hierarchically Pruned Attention (HiP) to increase context length in large language models.
HiP reduces the time complexity of the attention mechanism to $O(T log T)$ and the space complexity to $O(T)$, where $T$ is the sequence length.
We show that HiP significantly reduces both prefill and decoding latencies, as well as memory usage, while maintaining high-quality generation with minimal degradation.
arXiv Detail & Related papers (2024-06-14T08:32:45Z) - LLoCO: Learning Long Contexts Offline [63.3458260335454]
We propose LLoCO, a novel approach to processing long contexts.
LLoCO learns contexts offline through context compression and in-domain parameter-efficient finetuning with LoRA.
Our approach extends the effective context window of a 4k token LLaMA2-7B model to handle up to 128k tokens.
arXiv Detail & Related papers (2024-04-11T17:57:22Z) - FAC$^2$E: Better Understanding Large Language Model Capabilities by Dissociating Language and Cognition [56.76951887823882]
Large language models (LLMs) are primarily evaluated by overall performance on various text understanding and generation tasks.
We present FAC$2$E, a framework for Fine-grAined and Cognition-grounded LLMs' Capability Evaluation.
arXiv Detail & Related papers (2024-02-29T21:05:37Z) - Language models are weak learners [71.33837923104808]
We show that prompt-based large language models can operate effectively as weak learners.
We incorporate these models into a boosting approach, which can leverage the knowledge within the model to outperform traditional tree-based boosting.
Results illustrate the potential for prompt-based LLMs to function not just as few-shot learners themselves, but as components of larger machine learning pipelines.
arXiv Detail & Related papers (2023-06-25T02:39:19Z) - Dynamic Context Pruning for Efficient and Interpretable Autoregressive Transformers [29.319666323947708]
We present a novel approach that dynamically prunes contextual information while preserving the model's expressiveness.
Our method employs a learnable mechanism that determines which uninformative tokens can be dropped from the context.
Our reference implementation achieves up to $2times$ increase in inference throughput and even greater memory savings.
arXiv Detail & Related papers (2023-05-25T07:39:41Z) - OverPrompt: Enhancing ChatGPT through Efficient In-Context Learning [49.38867353135258]
We propose OverPrompt, leveraging the in-context learning capability of LLMs to handle multiple task inputs.
Our experiments show that OverPrompt can achieve cost-efficient zero-shot classification without causing significant detriment to task performance.
arXiv Detail & Related papers (2023-05-24T10:08:04Z) - Learning to Ask Conversational Questions by Optimizing Levenshtein
Distance [83.53855889592734]
We introduce a Reinforcement Iterative Sequence Editing (RISE) framework that optimize the minimum Levenshtein distance (MLD) through explicit editing actions.
RISE is able to pay attention to tokens that are related to conversational characteristics.
Experimental results on two benchmark datasets show that RISE significantly outperforms state-of-the-art methods.
arXiv Detail & Related papers (2021-06-30T08:44:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.