Dermatologist-like explainable AI enhances melanoma diagnosis accuracy: eye-tracking study
- URL: http://arxiv.org/abs/2409.13476v1
- Date: Fri, 20 Sep 2024 13:08:33 GMT
- Title: Dermatologist-like explainable AI enhances melanoma diagnosis accuracy: eye-tracking study
- Authors: Tirtha Chanda, Sarah Haggenmueller, Tabea-Clara Bucher, Tim Holland-Letz, Harald Kittler, Philipp Tschandl, Markus V. Heppt, Carola Berking, Jochen S. Utikal, Bastian Schilling, Claudia Buerger, Cristian Navarrete-Dechent, Matthias Goebeler, Jakob Nikolas Kather, Carolin V. Schneider, Benjamin Durani, Hendrike Durani, Martin Jansen, Juliane Wacker, Joerg Wacker, Reader Study Consortium, Titus J. Brinker,
- Abstract summary: Artificial intelligence (AI) systems have substantially improved dermatologists' diagnostic accuracy for melanoma.
Despite these advancements, there remains a critical need for objective evaluation of how dermatologists engage with both AI and XAI tools.
In this study, 76 dermatologists participated in a reader study, diagnosing 16 dermoscopic images of melanomas and nevi using an XAI system that provides detailed, domain-specific explanations.
- Score: 1.1876787296873537
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Artificial intelligence (AI) systems have substantially improved dermatologists' diagnostic accuracy for melanoma, with explainable AI (XAI) systems further enhancing clinicians' confidence and trust in AI-driven decisions. Despite these advancements, there remains a critical need for objective evaluation of how dermatologists engage with both AI and XAI tools. In this study, 76 dermatologists participated in a reader study, diagnosing 16 dermoscopic images of melanomas and nevi using an XAI system that provides detailed, domain-specific explanations. Eye-tracking technology was employed to assess their interactions. Diagnostic performance was compared with that of a standard AI system lacking explanatory features. Our findings reveal that XAI systems improved balanced diagnostic accuracy by 2.8 percentage points relative to standard AI. Moreover, diagnostic disagreements with AI/XAI systems and complex lesions were associated with elevated cognitive load, as evidenced by increased ocular fixations. These insights have significant implications for clinical practice, the design of AI tools for visual tasks, and the broader development of XAI in medical diagnostics.
Related papers
- Breast Cancer Diagnosis: A Comprehensive Exploration of Explainable Artificial Intelligence (XAI) Techniques [38.321248253111776]
Article explores the application of Explainable Artificial Intelligence (XAI) techniques in the detection and diagnosis of breast cancer.
Aims to highlight the potential of XAI in bridging the gap between complex AI models and practical healthcare applications.
arXiv Detail & Related papers (2024-06-01T18:50:03Z) - A Survey of Artificial Intelligence in Gait-Based Neurodegenerative Disease Diagnosis [51.07114445705692]
neurodegenerative diseases (NDs) traditionally require extensive healthcare resources and human effort for medical diagnosis and monitoring.
As a crucial disease-related motor symptom, human gait can be exploited to characterize different NDs.
The current advances in artificial intelligence (AI) models enable automatic gait analysis for NDs identification and classification.
arXiv Detail & Related papers (2024-05-21T06:44:40Z) - Enhancing Breast Cancer Diagnosis in Mammography: Evaluation and Integration of Convolutional Neural Networks and Explainable AI [0.0]
The study presents an integrated framework combining Convolutional Neural Networks (CNNs) and Explainable Artificial Intelligence (XAI) for the enhanced diagnosis of breast cancer.
The methodology encompasses an elaborate data preprocessing pipeline and advanced data augmentation techniques to counteract dataset limitations.
A focal point of our study is the evaluation of XAI's effectiveness in interpreting model predictions.
arXiv Detail & Related papers (2024-04-05T05:00:21Z) - The Limits of Perception: Analyzing Inconsistencies in Saliency Maps in XAI [0.0]
Explainable artificial intelligence (XAI) plays an indispensable role in demystifying the decision-making processes of AI.
As they operate as "black boxes," with their reasoning obscured and inaccessible, there's an increased risk of misdiagnosis.
This shift towards transparency is not just beneficial -- it's a critical step towards responsible AI integration in healthcare.
arXiv Detail & Related papers (2024-03-23T02:15:23Z) - An Explainable AI Framework for Artificial Intelligence of Medical
Things [2.7774194651211217]
We leverage a custom XAI framework, incorporating techniques such as Local Interpretable Model-Agnostic Explanations (LIME), SHapley Additive exPlanations (SHAP), and Gradient-weighted Class Activation Mapping (Grad-Cam)
The proposed framework enhances the effectiveness of strategic healthcare methods and aims to instill trust and promote understanding in AI-driven medical applications.
We apply the XAI framework to brain tumor detection as a use case demonstrating accurate and transparent diagnosis.
arXiv Detail & Related papers (2024-03-07T01:08:41Z) - Dermatologist-like explainable AI enhances trust and confidence in
diagnosing melanoma [0.0]
A lack of transparency in how artificial intelligence systems identify melanoma poses severe obstacles to user acceptance.
Most XAI methods are unable to produce precisely located domain-specific explanations, making the explanations difficult to interpret.
We developed an XAI system that produces text and region based explanations that are easily interpretable by dermatologists.
arXiv Detail & Related papers (2023-03-17T17:25:55Z) - AutoPrognosis 2.0: Democratizing Diagnostic and Prognostic Modeling in
Healthcare with Automated Machine Learning [72.2614468437919]
We present a machine learning framework, AutoPrognosis 2.0, to develop diagnostic and prognostic models.
We provide an illustrative application where we construct a prognostic risk score for diabetes using the UK Biobank.
Our risk score has been implemented as a web-based decision support tool and can be publicly accessed by patients and clinicians worldwide.
arXiv Detail & Related papers (2022-10-21T16:31:46Z) - Towards the Use of Saliency Maps for Explaining Low-Quality
Electrocardiograms to End Users [45.62380752173638]
When using medical images for diagnosis, it is important that the images are of high quality.
In telemedicine, a common problem is that the quality issue is only flagged once the patient has left the clinic, meaning they must return in order to have the exam redone.
This paper reports on the development of an AI system for flagging and explaining low-quality medical images in real-time.
arXiv Detail & Related papers (2022-07-06T14:53:26Z) - Multi-Scale Hybrid Vision Transformer for Learning Gastric Histology:
AI-Based Decision Support System for Gastric Cancer Treatment [50.89811515036067]
Gastric endoscopic screening is an effective way to decide appropriate gastric cancer (GC) treatment at an early stage, reducing GC-associated mortality rate.
We propose a practical AI system that enables five subclassifications of GC pathology, which can be directly matched to general GC treatment guidance.
arXiv Detail & Related papers (2022-02-17T08:33:52Z) - Review of Artificial Intelligence Techniques in Imaging Data
Acquisition, Segmentation and Diagnosis for COVID-19 [71.41929762209328]
The pandemic of coronavirus disease 2019 (COVID-19) is spreading all over the world.
Medical imaging such as X-ray and computed tomography (CT) plays an essential role in the global fight against COVID-19.
The recently emerging artificial intelligence (AI) technologies further strengthen the power of the imaging tools and help medical specialists.
arXiv Detail & Related papers (2020-04-06T15:21:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.