On-chip pulse shaping of entangled photons
- URL: http://arxiv.org/abs/2409.13638v1
- Date: Fri, 20 Sep 2024 16:45:43 GMT
- Title: On-chip pulse shaping of entangled photons
- Authors: Kaiyi Wu, Lucas M. Cohen, Karthik V. Myilswamy, Navin B. Lingaraju, Hsuan-Hao Lu, Joseph M. Lukens, Andrew M. Weiner,
- Abstract summary: We demonstrate spectral shaping of entangled photons with a six-channel microring-resonator-based silicon photonic pulse shaper.
The pulse shaper's fine spectral resolution enables control of nanosecond-scale temporal features, which are observed by direct coincidence detection of biphoton correlation functions.
This work marks, to our knowledge, the first demonstration of biphoton pulse shaping using an integrated spectral shaper and holds significant promise for applications in quantum information processing.
- Score: 0.16913539582079598
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We demonstrate spectral shaping of entangled photons with a six-channel microring-resonator-based silicon photonic pulse shaper. Through precise calibration of thermal phase shifters in a microresonator-based pulse shaper, we demonstrate line-by-line phase control on a 3~GHz grid for two frequency-bin-entangled qudits, corresponding to Hilbert spaces of up to $6\times 6$ ($3\times 3$) dimensions for shared (independent) signal-idler filters. The pulse shaper's fine spectral resolution enables control of nanosecond-scale temporal features, which are observed by direct coincidence detection of biphoton correlation functions that show excellent agreement with theory. This work marks, to our knowledge, the first demonstration of biphoton pulse shaping using an integrated spectral shaper and holds significant promise for applications in quantum information processing.
Related papers
- Wigner-function formalism for the detection of single microwave pulses in a resonator-coupled double quantum dot [0.0]
We theoretically analyze the photodetection of single microwave pulses.
We find a trade-off between detecting the time and the frequency of the incoming photons in agreement with the time-energy uncertainty relation.
Our findings give insight into the time-dependent properties of microwave photons interacting with electrons in a DQD-resonator hybrid system.
arXiv Detail & Related papers (2024-10-18T08:35:42Z) - Engineering biphoton spectral wavefunction in a silicon micro-ring resonator with split resonances [21.14676162428423]
Control of frequency-time amplitude of a photon's electric field has been demonstrated on platforms with second-order optical nonlinearity.
Here, we demonstrate a cavity-enhanced photon-pair source that can generate both separable states and controllable entangled states.
Experiments and simulations demonstrate the capacity to manipulate the frequency-domain wavefunction in a silicon-based device.
arXiv Detail & Related papers (2024-08-24T14:23:21Z) - Dynamical theory of single-photon transport through a qubit chain
coupled to a one-dimensional nanophotonic waveguide [0.0]
We study the dynamics of a single-photon pulse travelling through a linear qubit chain coupled to continuum modes in a 1D photonic waveguide.
We derive a time-dependent dynamical theory for qubit amplitudes and for transmitted and reflected spectra.
arXiv Detail & Related papers (2023-07-27T10:21:16Z) - Hyper-entanglement between pulse modes and frequency bins [101.18253437732933]
Hyper-entanglement between two or more photonic degrees of freedom (DOF) can enhance and enable new quantum protocols.
We demonstrate the generation of photon pairs hyper-entangled between pulse modes and frequency bins.
arXiv Detail & Related papers (2023-04-24T15:43:08Z) - Two-photon pulse scattering spectroscopy for arrays of two-level atoms,
coupled to the waveguide [125.99533416395765]
We have theoretically studied the scattering of two-photon pulses from a spatially-separated array of two-level atoms coupled to a waveguide.
The contributions of various single-eigenstate and double-excited eigenstates of the array have been analyzed.
arXiv Detail & Related papers (2023-02-27T22:05:07Z) - Three-photon excitation of quantum two-level systems [0.0]
We demonstrate that semiconductor quantum dots can be excited efficiently in a resonant three-photon process.
Time-dependent Floquet theory is used to quantify the strength of the multi-photon processes.
We exploit this technique to probe intrinsic properties of InGaN quantum dots.
arXiv Detail & Related papers (2022-02-04T09:20:24Z) - Two-photon resonance fluorescence of two interacting non-identical
quantum emitters [77.34726150561087]
We study a system of two interacting, non-indentical quantum emitters driven by a coherent field.
We show that the features imprinted by the two-photon dynamics into the spectrum of resonance fluorescence are particularly sensitive to changes in the distance between emitters.
This can be exploited for applications such as superresolution imaging of point-like sources.
arXiv Detail & Related papers (2021-06-04T16:13:01Z) - Controlled coherent dynamics of [VO(TPP)], a prototype molecular nuclear
qudit with an electronic ancilla [50.002949299918136]
We show that [VO(TPP)] (vanadyl tetraphenylporphyrinate) is a promising system suitable to implement quantum computation algorithms.
It embeds an electronic spin 1/2 coupled through hyperfine interaction to a nuclear spin 7/2, both characterized by remarkable coherence.
arXiv Detail & Related papers (2021-03-15T21:38:41Z) - Auto-heterodyne characterization of narrow-band photon pairs [68.8204255655161]
We describe a technique to measure photon pair joint spectra by detecting the time-correlation beat note when non-degenerate photon pairs interfere at a beamsplitter.
The technique is well suited to characterize pairs of photons, each of which can interact with a single atomic species.
arXiv Detail & Related papers (2021-01-08T18:21:30Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z) - Remotely projecting states of photonic temporal modes [0.0]
We show remote spectral shaping of single photon states and probe the coherence properties of two-photon quantum correlations in the time-frequency domain.
We control the temporal mode structure between the generated photon pairs and show remote state-projections over a range of time-frequency mode superpositions.
arXiv Detail & Related papers (2020-04-22T22:38:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.