論文の概要: Neural filtering for Neural Network-based Models of Dynamic Systems
- arxiv url: http://arxiv.org/abs/2409.13654v1
- Date: Fri, 20 Sep 2024 17:03:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-07 06:08:43.892201
- Title: Neural filtering for Neural Network-based Models of Dynamic Systems
- Title(参考訳): ニューラルネットワークに基づく動的システムのモデルに対するニューラルフィルタリング
- Authors: Parham Oveissi, Turibius Rozario, Ankit Goel,
- Abstract要約: 本稿では,ニューラルネットワークを用いた動的システムの長期予測精度を高めるニューラルネットワークフィルタを提案する。
拡張カルマンフィルタによって動機付けられたニューラルネットワークフィルタは、ニューラルネットワークの状態予測と物理系からの計測とを組み合わせて、推定状態の精度を向上させる。
- 参考スコア(独自算出の注目度): 0.7373617024876725
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The application of neural networks in modeling dynamic systems has become prominent due to their ability to estimate complex nonlinear functions. Despite their effectiveness, neural networks face challenges in long-term predictions, where the prediction error diverges over time, thus degrading their accuracy. This paper presents a neural filter to enhance the accuracy of long-term state predictions of neural network-based models of dynamic systems. Motivated by the extended Kalman filter, the neural filter combines the neural network state predictions with the measurements from the physical system to improve the estimated state's accuracy. The neural filter's improvements in prediction accuracy are demonstrated through applications to four nonlinear dynamical systems. Numerical experiments show that the neural filter significantly improves prediction accuracy and bounds the state estimate covariance, outperforming the neural network predictions.
- Abstract(参考訳): 力学系モデリングにおけるニューラルネットワークの適用は、複雑な非線形関数を推定する能力によって顕著になっている。
その効果にもかかわらず、ニューラルネットワークは長期的な予測において課題に直面し、予測エラーは時間とともに分散し、精度が低下する。
本稿では,ニューラルネットワークを用いた動的システムの長期予測精度を高めるニューラルネットワークフィルタを提案する。
拡張カルマンフィルタによって動機付けられたニューラルネットワークフィルタは、ニューラルネットワークの状態予測と物理系からの計測とを組み合わせて、推定状態の精度を向上させる。
ニューラルネットワークによる予測精度の向上は、4つの非線形力学系への応用を通じて実証される。
数値実験により、ニューラルネットワークフィルタは予測精度を著しく改善し、状態推定共分散を束縛し、ニューラルネットワーク予測より優れていることが示された。
関連論文リスト
- Feedback Favors the Generalization of Neural ODEs [24.342023073252395]
本稿では、フィードバックループがニューラル常微分方程式(ニューラルODE)の学習潜時ダイナミクスを柔軟に補正可能であることを示す。
フィードバックニューラルネットワークは、新しい2自由度ニューラルネットワークであり、前のタスクで精度が失われることなく、目に見えないシナリオで堅牢なパフォーマンスを持つ。
論文 参考訳(メタデータ) (2024-10-14T08:09:45Z) - Advancing Spatio-Temporal Processing in Spiking Neural Networks through Adaptation [6.233189707488025]
本稿では、適応LIFニューロンとそのネットワークの動的、計算的、および学習特性について分析する。
適応LIFニューロンのネットワークの優越性は、複雑な時系列の予測と生成にまで及んでいることを示す。
論文 参考訳(メタデータ) (2024-08-14T12:49:58Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
本稿では,ニューラルネットワークをパラメータの計算グラフとして表現することを提案する。
我々のアプローチは、ニューラルネットワークグラフを多種多様なアーキテクチャでエンコードする単一モデルを可能にする。
本稿では,暗黙的ニューラル表現の分類や編集など,幅広いタスクにおける本手法の有効性を示す。
論文 参考訳(メタデータ) (2024-03-18T18:01:01Z) - A Spectral Theory of Neural Prediction and Alignment [8.65717258105897]
我々は、回帰からモデルと対象のスペクトル特性への一般化誤差を関連づける最近の理論的枠組みを用いる。
我々は、視覚的皮質活動を予測するディープニューラルネットワークを多数テストし、回帰によって測定された低ニューラルネットワーク予測誤差をもたらす複数のタイプのジオメトリーが存在することを示す。
論文 参考訳(メタデータ) (2023-09-22T12:24:06Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
本研究では,通常の逆カオス時系列を分類するために訓練されたニューラルネットワークの内部動作について検討する。
入力周期性とアクティベーション周期の関係は,LKCNNモデルの性能向上の鍵となる。
論文 参考訳(メタデータ) (2023-06-04T08:53:27Z) - Expressive architectures enhance interpretability of dynamics-based
neural population models [2.294014185517203]
シミュレーションされたニューラルネットワークから潜在カオスを引き付ける際のシーケンシャルオートエンコーダ(SAE)の性能を評価する。
広帯域再帰型ニューラルネットワーク(RNN)を用いたSAEでは,真の潜在状態次元での正確な発射速度を推定できないことがわかった。
論文 参考訳(メタデータ) (2022-12-07T16:44:26Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
本稿では,疫病予測のための新しい物理インフォームドニューラルネットワークEINNを紹介する。
メカニスティックモデルによって提供される理論的柔軟性と、AIモデルによって提供されるデータ駆動表現性の両方を活用する方法について検討する。
論文 参考訳(メタデータ) (2022-02-21T18:59:03Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - Bubblewrap: Online tiling and real-time flow prediction on neural
manifolds [2.624902795082451]
本稿では, 高速で安定な次元減少と, 結果のニューラル多様体のソフトタイリングを結合する手法を提案する。
得られたモデルはキロヘルツのデータレートでトレーニングでき、数分で神経力学の正確な近似を生成し、ミリ秒以下の時間スケールで予測を生成する。
論文 参考訳(メタデータ) (2021-08-31T16:01:45Z) - Neural Dynamic Mode Decomposition for End-to-End Modeling of Nonlinear
Dynamics [49.41640137945938]
ニューラルネットワークに基づくリフト関数を推定するためのニューラルダイナミックモード分解法を提案する。
提案手法により,予測誤差はニューラルネットワークとスペクトル分解によって逆伝搬される。
提案手法の有効性を,固有値推定と予測性能の観点から実証した。
論文 参考訳(メタデータ) (2020-12-11T08:34:26Z) - The Neural Coding Framework for Learning Generative Models [91.0357317238509]
本稿では,脳の予測処理理論に触発された新しい神経生成モデルを提案する。
同様に、私たちの生成モデルにおける人工ニューロンは、隣接するニューロンが何をするかを予測し、予測が現実にどの程度一致するかに基づいてパラメータを調整します。
論文 参考訳(メタデータ) (2020-12-07T01:20:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。