論文の概要: A coherent approach to quantum-classical optimization
- arxiv url: http://arxiv.org/abs/2409.13924v1
- Date: Fri, 20 Sep 2024 22:22:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-07 04:39:44.079126
- Title: A coherent approach to quantum-classical optimization
- Title(参考訳): 量子古典最適化におけるコヒーレントアプローチ
- Authors: Andrés N. Cáliz, Jordi Riu, Josep Bosch, Pau Torrente, Jose Miralles, Arnau Riera,
- Abstract要約: ハイブリッド量子古典最適化技術は、量子計算資源の削減を可能にすることが示されている。
我々は、コヒーレンスエントロピーを量子状態の適合性を決定する重要な指標とみなす。
本稿では,従来の課題に対するアプローチを大幅に改善する量子古典最適化プロトコルを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Hybrid quantum-classical optimization techniques, which incorporate the pre-optimization of Variational Quantum Algorithms (VQAs) using Tensor Networks (TNs), have been shown to allow for the reduction of quantum computational resources. In the particular case of large optimization problems, commonly found in real-world use cases, this strategy is almost mandatory to reduce the otherwise unfathomable execution costs and improve the quality of the results. We identify the coherence entropy as a crucial metric in determining the suitability of quantum states as effective initialization candidates. Our findings are validated through extensive numerical tests for the Quantum Approximate Optimization Algorithm (QAOA), in which we find that the optimal initialization states are pure Gibbs states. Further, these results are explained with the inclusion of a simple and yet novel notion of expressivity adapted to classical optimization problems. Based on this finding, we propose a quantum-classical optimization protocol that significantly improves on previous approaches for such tasks, with specific focus on its effectiveness.
- Abstract(参考訳): テンソルネットワーク(TN)を用いた変分量子アルゴリズム(VQA)の事前最適化を取り入れたハイブリッド量子古典最適化技術は、量子計算資源の削減を可能にすることが示されている。
現実のユースケースでよく見られる大規模な最適化問題の場合、この戦略は、そうでない実行コストを削減し、結果の品質を向上させるためにほとんど必須である。
我々は、コヒーレンスエントロピーを、量子状態の適合性を効果的な初期化候補として決定する重要な指標とみなす。
量子近似最適化アルゴリズム (QAOA) の広範な数値実験により, 最適初期化状態は純粋ギブス状態であることが判明した。
さらに、これらの結果は古典的最適化問題に適応した単純かつ斬新な表現性の概念を含めることで説明される。
そこで本研究では,これらの課題に対する従来のアプローチを大幅に改善する量子古典最適化プロトコルを提案する。
関連論文リスト
- Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
変分量子アルゴリズム(VQA)は、最適化と機械学習問題を解決するための有望な量子代替手段として登場した。
本稿では,回路設計が2つの分類問題に対して得られる性能に与える影響を実験的に示す。
また、実量子コンピュータのシミュレーションにおいて、ノイズの存在下で得られた回路の劣化について検討する。
論文 参考訳(メタデータ) (2024-04-17T11:00:12Z) - Randomized Benchmarking of Local Zeroth-Order Optimizers for Variational
Quantum Systems [65.268245109828]
古典学のパフォーマンスを、半ランダム化された一連のタスクで比較する。
量子システムにおける一般に好適な性能とクエリ効率のため、局所ゼロ階数に着目する。
論文 参考訳(メタデータ) (2023-10-14T02:13:26Z) - Benchmarking Metaheuristic-Integrated QAOA against Quantum Annealing [0.0]
この研究は、異なる問題領域にわたる量子アニーリングとメタヒューリスティック統合QAOAの長所と短所に関する洞察を提供する。
その結果,ハイブリッド手法は古典的最適化手法を利用してQAOAの解品質と収束速度を向上させることが示唆された。
論文 参考訳(メタデータ) (2023-09-28T18:55:22Z) - A Review on Quantum Approximate Optimization Algorithm and its Variants [47.89542334125886]
量子近似最適化アルゴリズム(Quantum Approximate Optimization Algorithm、QAOA)は、難解な最適化問題を解くことを目的とした、非常に有望な変分量子アルゴリズムである。
この総合的なレビューは、様々なシナリオにおけるパフォーマンス分析を含む、QAOAの現状の概要を提供する。
我々は,提案アルゴリズムの今後の展望と方向性を探りながら,選択したQAOA拡張と変種の比較研究を行う。
論文 参考訳(メタデータ) (2023-06-15T15:28:12Z) - Prog-QAOA: Framework for resource-efficient quantum optimization through classical programs [0.0]
現在の量子最適化アルゴリズムでは、元の問題を二進最適化問題として表現し、量子デバイスに適した等価イジングモデルに変換する必要がある。
目的関数を計算し、制約を認証するための古典的プログラムを設計し、後に量子回路にコンパイルする。
その結果,量子近似最適化アルゴリズム (QAOA) が新たに導入された。
論文 参考訳(メタデータ) (2022-09-07T18:01:01Z) - Surrogate-based optimization for variational quantum algorithms [0.0]
変分量子アルゴリズム(英: Variational quantum algorithm)は、短期量子コンピュータで使用される技術の一種である。
実験的な測定をほとんど行わない変分回路のサロゲートモデルの学習について紹介する。
次に、元のデータとは対照的に、これらのモデルを用いてパラメータ最適化を行う。
論文 参考訳(メタデータ) (2022-04-12T00:15:17Z) - Lyapunov control-inspired strategies for quantum combinatorial
optimization [0.0]
我々は、Lyapunov制御にインスパイアされた量子最適化戦略の拡張的な記述を提供する。
代わりに、これらの戦略は量子ビット測定からのフィードバックを利用して、決定論的に量子回路パラメータに値を割り当てる。
論文 参考訳(メタデータ) (2021-08-12T19:47:59Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
マルチバスグラフ複雑性と非線形活性化関数の2つの革新の恩恵を受ける新しい変分量子アルゴリズムを導入する。
その結果,最適化性能が向上し,有効景観が2つ向上し,測定の進歩が減少した。
論文 参考訳(メタデータ) (2021-06-24T20:16:02Z) - Quantum variational optimization: The role of entanglement and problem
hardness [0.0]
本稿では, 絡み合いの役割, 変動量子回路の構造, 最適化問題の構造について検討する。
数値計算の結果,絡み合うゲートの分布を問題のトポロジに適応させる利点が示唆された。
リスク型コスト関数に条件値を適用することで最適化が向上し、最適解と重複する確率が増大することを示す。
論文 参考訳(メタデータ) (2021-03-26T14:06:54Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisyハイブリッド量子古典アルゴリズムは、ノイズ中間量子デバイスの使用を最大化する強力なツールである。
我々は、変分量子アルゴリズムで使用されるそのようなアンサーゼを「効率的な回路訓練」(PECT)と呼ぶ戦略を提案する。
すべてのアンサッツパラメータを一度に最適化する代わりに、PECTは一連の変分アルゴリズムを起動する。
論文 参考訳(メタデータ) (2020-10-01T18:14:11Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
QAOA(Quantum Approximate Optimization Algorithm)のようなハイブリッド量子古典アルゴリズムは、短期量子コンピュータを実用的に活用するための最も奨励的なアプローチの1つである。
このようなアルゴリズムは通常変分形式で実装され、古典的な最適化法と量子機械を組み合わせて最適化問題の優れた解を求める。
本研究では,クロスエントロピー法を用いてランドスケープを形作り,古典的パラメータがより容易により良いパラメータを発見でき,その結果,性能が向上することを示す。
論文 参考訳(メタデータ) (2020-03-11T13:52:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。