Sparse Low-Ranked Self-Attention Transformer for Remaining Useful Lifetime Prediction of Optical Fiber Amplifiers
- URL: http://arxiv.org/abs/2409.14378v2
- Date: Fri, 27 Sep 2024 10:04:29 GMT
- Title: Sparse Low-Ranked Self-Attention Transformer for Remaining Useful Lifetime Prediction of Optical Fiber Amplifiers
- Authors: Dominic Schneider, Lutz Rapp,
- Abstract summary: We propose Sparse Low-ranked self-Attention Transformer (SLAT) as a novel Remaining useful lifetime (RUL) prediction method.
SLAT is based on an encoder-decoder architecture, wherein two parallel working encoders extract features for sensors and time steps.
The implementation of sparsity in the attention matrix and a low-rank parametrization reduce overfitting and increase generalization.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Optical fiber amplifiers are key elements in present optical networks. Failures of these components result in high financial loss of income of the network operator as the communication traffic over an affected link is interrupted. Applying Remaining useful lifetime (RUL) prediction in the context of Predictive Maintenance (PdM) to optical fiber amplifiers to predict upcoming system failures at an early stage, so that network outages can be minimized through planning of targeted maintenance actions, ensures reliability and safety. Optical fiber amplifier are complex systems, that work under various operating conditions, which makes correct forecasting a difficult task. Increased monitoring capabilities of systems results in datasets that facilitate the application of data-driven RUL prediction methods. Deep learning models in particular have shown good performance, but generalization based on comparatively small datasets for RUL prediction is difficult. In this paper, we propose Sparse Low-ranked self-Attention Transformer (SLAT) as a novel RUL prediction method. SLAT is based on an encoder-decoder architecture, wherein two parallel working encoders extract features for sensors and time steps. By utilizing the self-attention mechanism, long-term dependencies can be learned from long sequences. The implementation of sparsity in the attention matrix and a low-rank parametrization reduce overfitting and increase generalization. Experimental application to optical fiber amplifiers exemplified on EDFA, as well as a reference dataset from turbofan engines, shows that SLAT outperforms the state-of-the-art methods.
Related papers
- Towards Resource-Efficient Federated Learning in Industrial IoT for Multivariate Time Series Analysis [50.18156030818883]
Anomaly and missing data constitute a thorny problem in industrial applications.
Deep learning enabled anomaly detection has emerged as a critical direction.
The data collected in edge devices contain user privacy.
arXiv Detail & Related papers (2024-11-06T15:38:31Z) - Generalizable Non-Line-of-Sight Imaging with Learnable Physical Priors [52.195637608631955]
Non-line-of-sight (NLOS) imaging has attracted increasing attention due to its potential applications.
Existing NLOS reconstruction approaches are constrained by the reliance on empirical physical priors.
We introduce a novel learning-based solution, comprising two key designs: Learnable Path Compensation (LPC) and Adaptive Phasor Field (APF)
arXiv Detail & Related papers (2024-09-21T04:39:45Z) - Beam Prediction based on Large Language Models [51.45077318268427]
Millimeter-wave (mmWave) communication is promising for next-generation wireless networks but suffers from significant path loss.
Traditional deep learning models, such as long short-term memory (LSTM), enhance beam tracking accuracy however are limited by poor robustness and generalization.
In this letter, we use large language models (LLMs) to improve the robustness of beam prediction.
arXiv Detail & Related papers (2024-08-16T12:40:01Z) - Linear Combination of Exponential Moving Averages for Wireless Channel
Prediction [2.34863357088666]
In this work, prediction models based on the exponential moving average (EMA) are investigated in depth.
A new model that we called EMA linear combination (ELC) is introduced, explained, and evaluated experimentally.
arXiv Detail & Related papers (2023-12-13T07:44:05Z) - Joint Channel Estimation and Feedback with Masked Token Transformers in
Massive MIMO Systems [74.52117784544758]
This paper proposes an encoder-decoder based network that unveils the intrinsic frequency-domain correlation within the CSI matrix.
The entire encoder-decoder network is utilized for channel compression.
Our method outperforms state-of-the-art channel estimation and feedback techniques in joint tasks.
arXiv Detail & Related papers (2023-06-08T06:15:17Z) - Towards Long-Term Time-Series Forecasting: Feature, Pattern, and
Distribution [57.71199089609161]
Long-term time-series forecasting (LTTF) has become a pressing demand in many applications, such as wind power supply planning.
Transformer models have been adopted to deliver high prediction capacity because of the high computational self-attention mechanism.
We propose an efficient Transformerbased model, named Conformer, which differentiates itself from existing methods for LTTF in three aspects.
arXiv Detail & Related papers (2023-01-05T13:59:29Z) - A Machine Learning-based Framework for Predictive Maintenance of
Semiconductor Laser for Optical Communication [0.0]
The proposed framework is validated using experimental data derived from accelerated aging tests conducted for semiconductor tunable lasers.
The proposed approach achieves a very good degradation performance prediction capability with a small root mean square error (RMSE) of 0.01, a good anomaly detection accuracy of 94.24% and a better RUL estimation capability compared to the existing ML-based laser RUL prediction models.
arXiv Detail & Related papers (2022-11-05T07:53:02Z) - Multi-mode fiber reservoir computing overcomes shallow neural networks
classifiers [8.891157811906407]
We recast multi-mode optical fibers into random hardware projectors, transforming an input dataset into a speckled image set.
We find that the hardware operates in a flatter region of the loss landscape when trained on fiber data, which aligns with the current theory of deep neural networks.
arXiv Detail & Related papers (2022-10-10T14:55:02Z) - The self-learning AI controller for adaptive power beaming with
fiber-array laser transmitter system [0.0]
We consider adaptive power beaming with fiber-array laser transmitter system in presence of atmospheric turbulence.
In this study an optimal control is synthesized by a deep neural network (DNN) using target-plane PVA sensor data as its input.
arXiv Detail & Related papers (2022-04-08T16:24:49Z) - Interference Distribution Prediction for Link Adaptation in
Ultra-Reliable Low-Latency Communications [71.0558149440701]
Link adaptation (LA) is considered to be one of the bottlenecks to realize URLLC.
In this paper, we focus on predicting the signal to interference plus noise ratio at the user to enhance the LA.
We show that exploiting time correlation of the interference is an important enabler of URLLC.
arXiv Detail & Related papers (2020-07-01T07:59:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.