論文の概要: Generative artificial intelligence usage by researchers at work: Effects of gender, career stage, type of workplace, and perceived barriers
- arxiv url: http://arxiv.org/abs/2409.14570v1
- Date: Sat, 31 Aug 2024 22:00:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-06 22:08:18.079689
- Title: Generative artificial intelligence usage by researchers at work: Effects of gender, career stage, type of workplace, and perceived barriers
- Title(参考訳): 研究者による創発的人工知能利用--ジェンダー、キャリアステージ、職場の種類、知覚的障壁の影響
- Authors: Pablo Dorta-González, Alexis Jorge López-Puig, María Isabel Dorta-González, Sara M. González-Betancor,
- Abstract要約: 近年, 次世代人工知能技術の研究環境への統合が盛んに行われている。
本稿では,プロの環境における研究者間の生成AIの利用頻度の要因を探究する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The integration of generative artificial intelligence technology into research environments has become increasingly common in recent years, representing a significant shift in the way researchers approach their work. This paper seeks to explore the factors underlying the frequency of use of generative AI amongst researchers in their professional environments. As survey data may be influenced by a bias towards scientists interested in AI, potentially skewing the results towards the perspectives of these researchers, this study uses a regression model to isolate the impact of specific factors such as gender, career stage, type of workplace, and perceived barriers to using AI technology on the frequency of use of generative AI. It also controls for other relevant variables such as direct involvement in AI research or development, collaboration with AI companies, geographic location, and scientific discipline. Our results show that researchers who face barriers to AI adoption experience an 11% increase in tool use, while those who cite insufficient training resources experience an 8% decrease. Female researchers experience a 7% decrease in AI tool usage compared to men, while advanced career researchers experience a significant 19% decrease. Researchers associated with government advisory groups are 45% more likely to use AI tools frequently than those in government roles. Researchers in for-profit companies show an increase of 19%, while those in medical research institutions and hospitals show an increase of 16% and 15%, respectively. This paper contributes to a deeper understanding of the mechanisms driving the use of generative AI tools amongst researchers, with valuable implications for both academia and industry.
- Abstract(参考訳): 生成人工知能技術の研究環境への統合は近年ますます一般的になり、研究者の取り組みの仕方が大きく変化している。
本稿では,プロの環境における研究者間の生成AIの利用頻度の要因を探究する。
調査データは、AIに関心を持つ科学者に対する偏見の影響を受け、これらの研究者の視点に結果を反映する可能性があるため、この研究は回帰モデルを用いて、生成AIの使用頻度に対するAI技術の使用に対する、性別、キャリアステージ、職場の種類、および知覚的障壁などの特定の要因の影響を分離する。
また、AI研究や開発への直接的な関与、AI企業とのコラボレーション、地理的位置、科学的規律など、他の関連する変数もコントロールしている。
その結果,AI導入の障壁に直面している研究者はツール使用が11%増加し,トレーニングリソース不足を訴えている研究者は8%減少していた。
女性研究者は男性に比べてAIツールの使用率が7%減少し、先進的なキャリア研究者は19%減少している。
政府の諮問グループに関連する研究者は、政府の役割よりもAIツールを頻繁に使用する傾向が45%高い。
営利企業の研究者は19%増加し、医療研究機関や病院では16%、病院では15%増加している。
本稿では, 研究者間で生成型AIツールの利用を促進するメカニズムの理解を深め, アカデミックと産業の両方に重要な意味を持つ。
関連論文リスト
- Raising the Stakes: Performance Pressure Improves AI-Assisted Decision Making [57.53469908423318]
日常の人が共通のAI支援タスクを完了すると、パフォーマンスプレッシャーがAIアドバイスへの依存に与える影響を示す。
利害関係が高い場合には、AIの説明の有無にかかわらず、利害関係が低い場合よりもAIアドバイスを適切に使用することが分かりました。
論文 参考訳(メタデータ) (2024-10-21T22:39:52Z) - Measuring Human Contribution in AI-Assisted Content Generation [68.03658922067487]
本研究は,AIによるコンテンツ生成における人間の貢献度を測定する研究課題を提起する。
人間の入力とAI支援出力の自己情報に対する相互情報を計算することにより、コンテンツ生成における人間の比例情報貢献を定量化する。
論文 参考訳(メタデータ) (2024-08-27T05:56:04Z) - On the Opportunities of Green Computing: A Survey [80.21955522431168]
人工知能(AI)は数十年にわたり、技術と研究において大きな進歩を遂げてきた。
高いコンピューティングパワーの必要性は、より高い二酸化炭素排出量をもたらし、研究の公正性を損なう。
コンピューティングリソースの課題とAIの環境への影響に取り組むため、グリーンコンピューティングはホットな研究トピックとなっている。
論文 参考訳(メタデータ) (2023-11-01T11:16:41Z) - AI empowering research: 10 ways how science can benefit from AI [0.0]
本稿では,人工知能(AI)が科学的研究に与える影響について考察する。
強力な参照ツール、研究問題の理解の改善、研究質問生成の改善、最適化された研究設計、スタブデータ生成、データ変換、高度なデータ分析、AI支援レポートなど、AIが科学者の仕事に革命をもたらす10の方法を強調している。
論文 参考訳(メタデータ) (2023-07-17T18:41:18Z) - Artificial intelligence adoption in the physical sciences, natural
sciences, life sciences, social sciences and the arts and humanities: A
bibliometric analysis of research publications from 1960-2021 [73.06361680847708]
1960年には333の研究分野の14%がAIに関連していたが、1972年には全研究分野の半分以上、1986年には80%以上、現在では98%以上まで増加した。
1960年には、333の研究分野の14%がAI(コンピュータ科学の多くの分野)に関連していたが、1972年までに全研究分野の半分以上、1986年には80%以上、現在では98%以上まで増加した。
我々は、現在の急上昇の状況が異なっており、学際的AI応用が持続する可能性が高いと結論付けている。
論文 参考訳(メタデータ) (2023-06-15T14:08:07Z) - The ethical ambiguity of AI data enrichment: Measuring gaps in research
ethics norms and practices [2.28438857884398]
この研究は、AI研究とデータ豊か化のために、同等な研究倫理要件と規範がどのように開発されたか、そしてどの程度まで調査する。
主要なAI会場は、人間のデータ収集のためのプロトコルを確立し始めているが、これらは矛盾なく著者が追従している。
論文 参考訳(メタデータ) (2023-06-01T16:12:55Z) - Quantifying the Benefit of Artificial Intelligence for Scientific Research [2.4700789675440524]
我々は、科学研究におけるAIの直接的な利用とAIの潜在的利益の両方を見積もる。
研究におけるAIの利用は科学に広く浸透しており、特に2015年以来急速に成長している。
我々の分析は、AIが多くの科学分野に利益をもたらす可能性があることを示しているが、AI教育とその研究応用の間には顕著な断絶がある。
論文 参考訳(メタデータ) (2023-04-17T08:08:50Z) - Human-Centered Responsible Artificial Intelligence: Current & Future
Trends [76.94037394832931]
近年、CHIコミュニティは人間中心のレスポンシブル人工知能の研究において著しい成長を遂げている。
この研究はすべて、人権と倫理に根ざしたまま、人類に利益をもたらすAIを開発し、AIの潜在的な害を減らすことを目的としている。
本研究グループでは,これらのトピックに関心のある学術・産業の研究者を集結させ,現在の研究動向と今後の研究動向を地図化することを目的とする。
論文 参考訳(メタデータ) (2023-02-16T08:59:42Z) - The Privatization of AI Research(-ers): Causes and Potential
Consequences -- From university-industry interaction to public research
brain-drain? [0.0]
民間部門は、基本人工知能(AI)研究開発においてますます重要な役割を担っている。
この現象は、学術から産業への研究者の脳ドレインの認識に反映されている。
学界から業界、特にエリート機関からGoogle、Microsoft、Facebookといったテクノロジー企業への研究者の流入が増加しています。
論文 参考訳(メタデータ) (2021-02-02T18:02:41Z) - Learnings from Frontier Development Lab and SpaceML -- AI Accelerators
for NASA and ESA [57.06643156253045]
AIとML技術による研究は、しばしば非同期の目標とタイムラインを備えたさまざまな設定で動作します。
我々は、NASAとESAの民間パートナーシップの下で、AIアクセラレータであるFrontier Development Lab(FDL)のケーススタディを実行する。
FDL研究は、AI研究の責任ある開発、実行、普及に基礎を置く原則的な実践に従う。
論文 参考訳(メタデータ) (2020-11-09T21:23:03Z) - A narrowing of AI research? [0.0]
学術と民間におけるAI研究のテーマ的多様性の進化について研究する。
我々は、AI研究における民間企業の影響力を、彼らが受け取った引用と他の機関とのコラボレーションを通じて測定する。
論文 参考訳(メタデータ) (2020-09-22T08:23:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。