Adaptive Conformal Inference for Multi-Step Ahead Time-Series Forecasting Online
- URL: http://arxiv.org/abs/2409.14792v1
- Date: Mon, 23 Sep 2024 08:07:49 GMT
- Title: Adaptive Conformal Inference for Multi-Step Ahead Time-Series Forecasting Online
- Authors: Johan Hallberg Szabadváry,
- Abstract summary: We propose an adaptation of the adaptive conformal inference algorithm to achieve finite-sample coverage guarantees.
Our multi-step ahead ACI procedure inherits these guarantees at each prediction step, as well as for the overall error rate.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The aim of this paper is to propose an adaptation of the well known adaptive conformal inference (ACI) algorithm to achieve finite-sample coverage guarantees in multi-step ahead time-series forecasting in the online setting. ACI dynamically adjusts significance levels, and comes with finite-sample guarantees on coverage, even for non-exchangeable data. Our multi-step ahead ACI procedure inherits these guarantees at each prediction step, as well as for the overall error rate. The multi-step ahead ACI algorithm can be used with different target error and learning rates at different prediction steps, which is illustrated in our numerical examples, where we employ a version of the confromalised ridge regression algorithm, adapted to multi-input multi-output forecasting. The examples serve to show how the method works in practice, illustrating the effect of variable target error and learning rates for different prediction steps, which suggests that a balance may be struck between efficiency (interval width) and coverage.t
Related papers
- Multi-model Ensemble Conformal Prediction in Dynamic Environments [14.188004615463742]
We introduce a novel adaptive conformal prediction framework, where the model used for creating prediction sets is selected on the fly from multiple candidate models.
The proposed algorithm is proven to achieve strongly adaptive regret over all intervals while maintaining valid coverage.
arXiv Detail & Related papers (2024-11-06T05:57:28Z) - Semiparametric conformal prediction [79.6147286161434]
Risk-sensitive applications require well-calibrated prediction sets over multiple, potentially correlated target variables.
We treat the scores as random vectors and aim to construct the prediction set accounting for their joint correlation structure.
We report desired coverage and competitive efficiency on a range of real-world regression problems.
arXiv Detail & Related papers (2024-11-04T14:29:02Z) - Conformalized Interval Arithmetic with Symmetric Calibration [9.559062601251464]
We develop conformal prediction intervals for single target to the prediction interval for sum of multiple targets.
We show that our method outperforms existing conformalized approaches as well as non-conformal approaches.
arXiv Detail & Related papers (2024-08-20T15:27:18Z) - Probabilistic Conformal Prediction with Approximate Conditional Validity [81.30551968980143]
We develop a new method for generating prediction sets that combines the flexibility of conformal methods with an estimate of the conditional distribution.
Our method consistently outperforms existing approaches in terms of conditional coverage.
arXiv Detail & Related papers (2024-07-01T20:44:48Z) - Conformalized Adaptive Forecasting of Heterogeneous Trajectories [8.022222226139032]
We present a new conformal method for generating simultaneous forecasting bands guaranteed to cover the entire path of a new random trajectory with sufficiently high probability.
This solution is both principled, providing precise finite-sample guarantees, and effective, often leading to more informative predictions than prior methods.
arXiv Detail & Related papers (2024-02-14T23:57:19Z) - Better Batch for Deep Probabilistic Time Series Forecasting [15.31488551912888]
We propose an innovative training method that incorporates error autocorrelation to enhance probabilistic forecasting accuracy.
Our method constructs a mini-batch as a collection of $D$ consecutive time series segments for model training.
It explicitly learns a time-varying covariance matrix over each mini-batch, encoding error correlation among adjacent time steps.
arXiv Detail & Related papers (2023-05-26T15:36:59Z) - Improved Online Conformal Prediction via Strongly Adaptive Online
Learning [86.4346936885507]
We develop new online conformal prediction methods that minimize the strongly adaptive regret.
We prove that our methods achieve near-optimal strongly adaptive regret for all interval lengths simultaneously.
Experiments show that our methods consistently obtain better coverage and smaller prediction sets than existing methods on real-world tasks.
arXiv Detail & Related papers (2023-02-15T18:59:30Z) - Conformal Inference for Online Prediction with Arbitrary Distribution
Shifts [1.2277343096128712]
We consider the problem of forming prediction sets in an online setting where the distribution generating the data is allowed to vary over time.
We develop a novel procedure with provably small regret over all local time intervals of a given width.
We test our techniques on two real-world datasets aimed at predicting stock market volatility and COVID-19 case counts.
arXiv Detail & Related papers (2022-08-17T16:51:12Z) - Efficient and Differentiable Conformal Prediction with General Function
Classes [96.74055810115456]
We propose a generalization of conformal prediction to multiple learnable parameters.
We show that it achieves approximate valid population coverage and near-optimal efficiency within class.
Experiments show that our algorithm is able to learn valid prediction sets and improve the efficiency significantly.
arXiv Detail & Related papers (2022-02-22T18:37:23Z) - CovarianceNet: Conditional Generative Model for Correct Covariance
Prediction in Human Motion Prediction [71.31516599226606]
We present a new method to correctly predict the uncertainty associated with the predicted distribution of future trajectories.
Our approach, CovariaceNet, is based on a Conditional Generative Model with Gaussian latent variables.
arXiv Detail & Related papers (2021-09-07T09:38:24Z) - A Framework for Sample Efficient Interval Estimation with Control
Variates [94.32811054797148]
We consider the problem of estimating confidence intervals for the mean of a random variable.
Under certain conditions, we show improved efficiency compared to existing estimation algorithms.
arXiv Detail & Related papers (2020-06-18T05:42:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.