論文の概要: DiSHA: Dimension-Sharding Adaptation with Fast Convergence and Fast Computation
- arxiv url: http://arxiv.org/abs/2409.15371v6
- Date: Tue, 31 Dec 2024 08:08:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-03 17:39:42.870254
- Title: DiSHA: Dimension-Sharding Adaptation with Fast Convergence and Fast Computation
- Title(参考訳): DiSHA: 高速収束と高速計算による次元シャーディング適応
- Authors: Jiale Kang,
- Abstract要約: Low-Rank Adaptation (LoRA) は,Large Language Models (LLMs) における低内在的ウェイトアップのランクを利用する
本稿では, PEFT設計空間を拡張し, 内在ランクを低くし, コンバージェンスをデフォルトで高速化する Dimension-Sharding Adaptation (DiSHA) を提案する。
提案するBlock Affine Adaptation (Bone)は,高い性能と効率性を実現する計算効率の高い構造である。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Low-Rank Adaptation (LoRA) leverages the low intrinsic rank of weight updates in Large Language Models (LLMs), establishing a Parameter-Efficient Fine-Tuning (PEFT) paradigm. However, LoRA suffers from slow convergence. We introduce Dimension-Sharding Adaptation (DiSHA), which expands the PEFT design space to unlock lower intrinsic ranks and faster convergence by default. Within DiSHA's design space, we propose Block Affine Adaptation (Bone), a computationally efficient structure that delivers both high performance and efficiency. While certain DiSHA configurations may result in colinear updates to weight shards, we address this with Block Affine Transformation Adaptation (BAT), a nonlinear variant of DiSHA. BAT introduces nonlinearity by combining trainable matrices with original weight shards in a nonlinear manner, inducing nonlinearity in matrix updates without introducing additional parameters. Empirical results show that Bone, under the DiSHA framework, consistently outperforms LoRA variants in both NLG and NLU tasks, with significantly improved computational efficiency. Further analysis demonstrates that BAT enhances model capabilities by leveraging its nonlinear design.
- Abstract(参考訳): Low-Rank Adaptation (LoRA) は、Large Language Models (LLMs) における低内在的なウェイトアップデートのランクを活用し、パラメータ効率の良いファインチューニング(PEFT)パラダイムを確立する。
しかし、LoRAは緩やかな収束に悩まされている。
本稿では, PEFT設計空間を拡張し, 内在ランクを低くし, コンバージェンスをデフォルトで高速化する Dimension-Sharding Adaptation (DiSHA) を提案する。
提案するBlock Affine Adaptation (Bone)は,高い性能と効率性を実現する計算効率の高い構造である。
ある種のDiSHA構成は重み付きシャードにコリニアな更新をもたらすかもしれないが、これをDiSHAの非線形変種であるBlock Affine Transformation Adaptation (BAT)で解決する。
BATは、トレーニング可能な行列と元のウェイトシャードを非線形に組み合わせて非線形性を導入し、追加パラメータを導入することなく行列更新において非線形性を誘導する。
実証的な結果から、DiSHAフレームワークの下では、RoRAの変形はNLGとNLUの両方のタスクで一貫して優れており、計算効率は大幅に向上している。
さらなる分析により、BATはその非線形設計を活用してモデル能力を向上させることが示されている。
関連論文リスト
- LoRA Done RITE: Robust Invariant Transformation Equilibration for LoRA Optimization [78.93425154518705]
低ランク適応 (LoRA) は、メモリ要求を低減し、LLMのパラメータ効率の高い微調整法である。
本稿では,LoRA最適化のための適応行列プレコンディショニング手法であるLoRA-RITEを紹介する。
論文 参考訳(メタデータ) (2024-10-27T22:57:12Z) - Less is More: Extreme Gradient Boost Rank-1 Adaption for Efficient Finetuning of LLMs [75.11449420928139]
微調整型大規模言語モデル(LLM)は、訓練済みモデルを下流タスクに適応させる上で重要な技術となっている。
Low-Rank Adaptation (LoRA) は有望な解決法として登場したが、低ランク適応の実用性能と理論的最適性の間にはギャップがある。
本稿では,このギャップを埋める新しいフレームワークであるeXtreme Gradient Boosting LoRAを提案する。
論文 参考訳(メタデータ) (2024-10-25T17:07:13Z) - MiLoRA: Efficient Mixture of Low-Rank Adaptation for Large Language Models Fine-tuning [9.91790333647256]
低ランク適応法(LoRA)とその混合実験法(MOE)は,高効率なパラメータ効率微調整法(PEFT)である。
新規かつ効率的なLoRA変種であるMiLoRAを提案する。
MiLoRAは、各LoRAモジュールを専門家として考慮し、プロンプト対応のルーティング機構を採用することで、従来のMOEスタイルのLoRAメソッドと異なる。
論文 参考訳(メタデータ) (2024-10-23T17:04:40Z) - SBoRA: Low-Rank Adaptation with Regional Weight Updates [19.15481369459963]
本稿では,SBORA(Standard Basis LoRA)を提案する。
SBoRAはトレーニング可能なパラメータの数を半分に減らし、LoRAと同様のトレーニング可能なパラメータの数でランクを2倍にする。
本研究は,LoraよりもSBoRA-FAの方が,常識推論や算術推論など,様々な微調整タスクにおいて優れていることを示す。
論文 参考訳(メタデータ) (2024-07-07T15:37:13Z) - ResLoRA: Identity Residual Mapping in Low-Rank Adaption [96.59370314485074]
低ランク適応(LoRA)の改良フレームワークであるResLoRAを提案する。
提案手法は,LoRAと比較してトレーニング可能なパラメータや推論コストを必要とせずに,より少ないトレーニングステップでより良い結果を得ることができる。
NLG,NLU,テキスト・ツー・イメージタスクの実験により,本手法の有効性が示された。
論文 参考訳(メタデータ) (2024-02-28T04:33:20Z) - DoRA: Weight-Decomposed Low-Rank Adaptation [57.68678247436207]
本稿では,FTとLoRAの相違点を明らかにするために,新しい重み分解解析法を提案する。
本研究は、FTの学習能力に類似することを目的として、重量分解低ランク適応(DoRA)を提案する。
DoRAは、事前訓練された重量を、微調整のための大きさと方向の2つの構成要素に分解する。
論文 参考訳(メタデータ) (2024-02-14T17:59:34Z) - PRILoRA: Pruned and Rank-Increasing Low-Rank Adaptation [65.268245109828]
我々はPRILoRAを導入し、各層ごとに異なるランクを線形に割り当て、トレーニングプロセスを通してプルーニングを行う。
8つのGLUEベンチマークで広範な実験を行い,PRILoRAの有効性を検証する。
論文 参考訳(メタデータ) (2024-01-20T20:25:17Z) - Chain of LoRA: Efficient Fine-tuning of Language Models via Residual
Learning [31.036465632204663]
本稿では,Frank-Wolfeアルゴリズムにインスパイアされた反復最適化フレームワークであるLoRAのChainを紹介する。
計算コストやメモリコストを増大させることなく,COLA が LoRA を一貫して上回ることを示す。
論文 参考訳(メタデータ) (2024-01-08T14:26:49Z) - LoRAPrune: Structured Pruning Meets Low-Rank Parameter-Efficient Fine-Tuning [56.88751562302793]
低ランク適応 (LoRA) が大型言語モデル (LLM) に登場した。
LoRAPruneは、高度にメモリ効率の良い正確な構造化プルーンドモデルを提供する新しいフレームワークである。
LoRAPruneはWikiText2では4.81、TBでは3.46、メモリ使用量は52.6%減少している。
論文 参考訳(メタデータ) (2023-05-28T15:15:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。