論文の概要: Balancing LoRA Performance and Efficiency with Simple Shard Sharing
- arxiv url: http://arxiv.org/abs/2409.15371v9
- Date: Fri, 16 May 2025 12:21:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-19 14:36:11.264817
- Title: Balancing LoRA Performance and Efficiency with Simple Shard Sharing
- Title(参考訳): 簡易シェアリングによるロラ性能と効率のバランス
- Authors: Jiale Kang, Qingyu Yin,
- Abstract要約: textbfOptimal textbfShard textbfIntegration in textbfLoRAは、単純なシャード共有機構を通じて、このトレードオフに対処する新しいPEFTアプローチである。
Fossilsは、標準的なLoRAと、その顕著な変種を、モデルパフォーマンスメトリクスと計算効率の両方で大幅に上回っている。
- 参考スコア(独自算出の注目度): 8.827921242078883
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Parameter-Efficient Fine-Tuning (PEFT) methods, particularly Low-Rank Adaptation (LoRA), effectively reduce the number of trainable parameters in Large Language Models (LLMs). However, as model scales continue to grow, the demand for computational resources remains a significant challenge. Existing LoRA variants often struggle to strike an optimal balance between adaptability (model performance and convergence speed) and efficiency (computational overhead, memory usage, and initialization time). This paper introduces FOSSIL(\textbf{F}ramework for \textbf{O}ptimal \textbf{S}hard \textbf{S}haring \textbf{I}ntegration in \textbf{L}oRA), a novel PEFT approach that addresses this trade-off through a simple shard-sharing mechanism. FOSSIL leverages the insight that a low-rank adaptation can be achieved by decomposing the weight matrix into multiple fragment matrices and utilizing a shared, trainable common fragment. This method constructs the low-rank update matrix through the replication of these shared, partitioned shards. We also propose a hardware-efficient and broadly applicable implementation for FOSSIL. Extensive experiments conducted on a range of tasks, alongside a systematic analysis of computational performance, demonstrate FOSSIL's superiority. The results show that FOSSIL significantly outperforms standard LoRA and its prominent variants in both model performance metrics and computational efficiency, including initialization speed and training throughput. By effectively balancing expressive power and resource utilization, FOSSIL offers a compelling solution for efficiently adapting large-scale models.
- Abstract(参考訳): パラメータ効率の良いファインチューニング(PEFT)手法、特にローランド適応(LoRA)は、大規模言語モデル(LLM)におけるトレーニング可能なパラメータの数を効果的に削減する。
しかし、モデルスケールが拡大を続けるにつれ、計算資源の需要は依然として大きな課題である。
既存のLoRA変種は、適応性(モデル性能と収束速度)と効率性(計算オーバーヘッド、メモリ使用量、初期化時間)の最適なバランスをとるのに苦労することが多い。
本稿では,FOSSIL(\textbf{F}ramework for \textbf{O}ptimal \textbf{S}hard \textbf{S}haring \textbf{I}ntegration in \textbf{L}oRA)を紹介する。
FOSSILは、重み行列を複数のフラグメント行列に分解し、共有可能なトレーニング可能な共通フラグメントを利用することで、低ランク適応を実現することができるという知見を活用する。
この方法はこれらの共有分割シャードの複製によって低ランク更新行列を構成する。
また、ハードウェア効率が高く、広く適用可能なFOSSILの実装を提案する。
計算性能の体系的な解析とともに、様々なタスクで行われた大規模な実験は、FOSSILの優位性を実証している。
その結果、FOSSILは、初期化速度やトレーニングスループットを含むモデル性能指標と計算効率の両方において、標準のLoRAとその顕著な変種を著しく上回っていることがわかった。
表現力と資源利用を効果的にバランスさせることで、FOSSILは大規模モデルを効率的に適応するための魅力的なソリューションを提供する。
関連論文リスト
- Sliding Window Attention Training for Efficient Large Language Models [55.56483740523027]
SWATを導入し,スライディングウインドウ・アテンション・トレーニング(Sliding Window Attention Training)により,より効率的な長文処理を実現する。
本稿では,まず,変圧器の非効率性について,ソフトマックス動作のばらつきから生じる注意シンク現象を考察する。
実験により、SWATは8つのベンチマーク上での最先端の線形リカレントアーキテクチャと比較してSOTA性能を達成することが示された。
論文 参考訳(メタデータ) (2025-02-26T05:31:44Z) - Make LoRA Great Again: Boosting LoRA with Adaptive Singular Values and Mixture-of-Experts Optimization Alignment [20.382810396966473]
Low-Rank Adaptation (LoRA)は、Large Language Models (LLM) のためのパラメータ効率の良い微調整を可能にする
現在の手法は静的特異値分解サブセットを初期化することでLoRAを最適化し、事前学習された知識を最適に活用する。
我々はLunderlineoRunderlineA Mixture-of-Experunderlinet (GOAT)を提案する。
GOATはSVD構造化MoEを用いて関連する事前情報を統合し、理論スケーリング係数を導出して最適化を完全微調整MoEと整合させる
論文 参考訳(メタデータ) (2025-02-24T06:48:13Z) - DSMoE: Matrix-Partitioned Experts with Dynamic Routing for Computation-Efficient Dense LLMs [70.91804882618243]
本稿では,事前学習したFFN層を計算ブロックに分割することで,分散化を実現するDSMoEを提案する。
我々は,Sigmoid アクティベーションとストレートスルー推定器を用いた適応型エキスパートルーティングを実装し,トークンがモデル知識の様々な側面に柔軟にアクセスできるようにする。
LLaMAモデルを用いた実験により、DSMoEは既存のプルーニング法やMoE法に比べて優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2025-02-18T02:37:26Z) - IntLoRA: Integral Low-rank Adaptation of Quantized Diffusion Models [68.55148272295916]
IntLoRAを提案し、整数型(INT)低ランクパラメータを用いて効率限界を押し上げ、量子化拡散モデルに適応させる。
IntLoRAには3つの大きな利点がある: (i) 微調整の場合、事前トレーニングされた重みは量子化され、メモリ使用量が減少する (ii) ストレージの場合、事前トレーニングされた重みと低ランクの重みの両方が、ディスクスペースを少なく消費するINT内にある; (iii) 推論の場合、IntLoRA重みは、効率的な整数乗算やビットシフトによって自然に量子化された事前トレーニングされた重みにマージできる。
論文 参考訳(メタデータ) (2024-10-29T05:50:17Z) - LoRA Done RITE: Robust Invariant Transformation Equilibration for LoRA Optimization [78.93425154518705]
低ランク適応 (LoRA) は、メモリ要求を低減し、LLMのパラメータ効率の高い微調整法である。
本稿では,LoRA最適化のための適応行列プレコンディショニング手法であるLoRA-RITEを紹介する。
論文 参考訳(メタデータ) (2024-10-27T22:57:12Z) - Less is More: Extreme Gradient Boost Rank-1 Adaption for Efficient Finetuning of LLMs [75.11449420928139]
微調整型大規模言語モデル(LLM)は、訓練済みモデルを下流タスクに適応させる上で重要な技術となっている。
Low-Rank Adaptation (LoRA) は有望な解決法として登場したが、低ランク適応の実用性能と理論的最適性の間にはギャップがある。
本稿では,このギャップを埋める新しいフレームワークであるeXtreme Gradient Boosting LoRAを提案する。
論文 参考訳(メタデータ) (2024-10-25T17:07:13Z) - MiLoRA: Efficient Mixture of Low-Rank Adaptation for Large Language Models Fine-tuning [9.91790333647256]
低ランク適応法(LoRA)とその混合実験法(MOE)は,高効率なパラメータ効率微調整法(PEFT)である。
新規かつ効率的なLoRA変種であるMiLoRAを提案する。
MiLoRAは、各LoRAモジュールを専門家として考慮し、プロンプト対応のルーティング機構を採用することで、従来のMOEスタイルのLoRAメソッドと異なる。
論文 参考訳(メタデータ) (2024-10-23T17:04:40Z) - NEAT: Nonlinear Parameter-efficient Adaptation of Pre-trained Models [26.808251361020066]
微調整された事前学習モデルは、しばしば最先端のパフォーマンスをもたらすが、全てのパラメータを更新する際に計算コストがかかる。
本稿では,軽量ニューラルネットワークを用いた非線形PEFT手法NEATを提案し,事前学習した重みの非線形変換を学習する。
理論解析により, NEATは等価な表現性を維持しつつ, LoRA よりも高い効率を達成することが示された。
論文 参考訳(メタデータ) (2024-10-02T17:29:23Z) - Flat-LoRA: Low-Rank Adaption over a Flat Loss Landscape [52.98187034726091]
Low-Rank Adaptation (LoRA) は低ランク行列のみを最適化することでモデルを微調整する効率的な方法である。
ロラ空間に平坦に見える解は、全パラメータ空間に鋭い方向が存在し、一般化性能を損なう可能性がある。
フルパラメータ空間の平坦領域に位置する低ランク適応を求める効率的なアプローチであるFlat-LoRAを提案する。
論文 参考訳(メタデータ) (2024-09-22T11:24:10Z) - SBoRA: Low-Rank Adaptation with Regional Weight Updates [19.15481369459963]
本稿では,SBORA(Standard Basis LoRA)を提案する。
SBoRAはトレーニング可能なパラメータの数を半分に減らし、LoRAと同様のトレーニング可能なパラメータの数でランクを2倍にする。
本研究は,LoraよりもSBoRA-FAの方が,常識推論や算術推論など,様々な微調整タスクにおいて優れていることを示す。
論文 参考訳(メタデータ) (2024-07-07T15:37:13Z) - Compressible Dynamics in Deep Overparameterized Low-Rank Learning & Adaptation [12.07880147193174]
モデルパラメータ内のデータと圧縮可能な力学の固有な低次元構造を利用することで、計算負担を伴わずにパラメータ化の利点を享受できることが示される。
提案手法は,低ランク行列と微調整言語モデルに対して有効であることを示す。
論文 参考訳(メタデータ) (2024-06-06T14:29:49Z) - OLoRA: Orthonormal Low-Rank Adaptation of Large Language Models [0.0]
Low-Rank Adaptation (LoRA)はこれらの問題を緩和するための有望な方法として登場した。
OLoRAはLLMトレーニングの収束を著しく加速する。
OLoRAは、様々な言語モデリングタスクで標準のLoRAよりもパフォーマンスが向上している。
論文 参考訳(メタデータ) (2024-06-03T20:37:27Z) - ResLoRA: Identity Residual Mapping in Low-Rank Adaption [96.59370314485074]
低ランク適応(LoRA)の改良フレームワークであるResLoRAを提案する。
提案手法は,LoRAと比較してトレーニング可能なパラメータや推論コストを必要とせずに,より少ないトレーニングステップでより良い結果を得ることができる。
NLG,NLU,テキスト・ツー・イメージタスクの実験により,本手法の有効性が示された。
論文 参考訳(メタデータ) (2024-02-28T04:33:20Z) - DoRA: Weight-Decomposed Low-Rank Adaptation [57.68678247436207]
本稿では,FTとLoRAの相違点を明らかにするために,新しい重み分解解析法を提案する。
本研究は、FTの学習能力に類似することを目的として、重量分解低ランク適応(DoRA)を提案する。
DoRAは、事前訓練された重量を、微調整のための大きさと方向の2つの構成要素に分解する。
論文 参考訳(メタデータ) (2024-02-14T17:59:34Z) - PRILoRA: Pruned and Rank-Increasing Low-Rank Adaptation [65.268245109828]
我々はPRILoRAを導入し、各層ごとに異なるランクを線形に割り当て、トレーニングプロセスを通してプルーニングを行う。
8つのGLUEベンチマークで広範な実験を行い,PRILoRAの有効性を検証する。
論文 参考訳(メタデータ) (2024-01-20T20:25:17Z) - Chain of LoRA: Efficient Fine-tuning of Language Models via Residual
Learning [31.036465632204663]
本稿では,Frank-Wolfeアルゴリズムにインスパイアされた反復最適化フレームワークであるLoRAのChainを紹介する。
計算コストやメモリコストを増大させることなく,COLA が LoRA を一貫して上回ることを示す。
論文 参考訳(メタデータ) (2024-01-08T14:26:49Z) - LoRAPrune: Structured Pruning Meets Low-Rank Parameter-Efficient Fine-Tuning [56.88751562302793]
低ランク適応 (LoRA) が大型言語モデル (LLM) に登場した。
LoRAPruneは、高度にメモリ効率の良い正確な構造化プルーンドモデルを提供する新しいフレームワークである。
LoRAPruneはWikiText2では4.81、TBでは3.46、メモリ使用量は52.6%減少している。
論文 参考訳(メタデータ) (2023-05-28T15:15:48Z) - AdaLoRA: Adaptive Budget Allocation for Parameter-Efficient Fine-Tuning [143.23123791557245]
下流タスクで訓練済みの大規模言語モデルを微調整することは、NLPにおいて重要なパラダイムとなっている。
重み行列のパラメータ予算をその重要度に応じて適応的に割り当てるAdaLoRAを提案する。
我々は,AdaLoRAの有効性を検証するために,自然言語処理,質問応答,自然言語生成に関する事前学習モデルを用いた広範囲な実験を行った。
論文 参考訳(メタデータ) (2023-03-18T22:36:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。