論文の概要: Nothing Conformal about Adaptive Conformal Inference
- arxiv url: http://arxiv.org/abs/2409.15548v2
- Date: Fri, 25 Oct 2024 12:36:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-06 19:32:29.542881
- Title: Nothing Conformal about Adaptive Conformal Inference
- Title(参考訳): 適応的等角推論についての一考察
- Authors: Johan Hallberg Szabadváry,
- Abstract要約: 適応共形推論 (Adaptive conformal Inference, ACI) は、非交換可能データの解法として提案されている。
共形予測器を用いたACIが信頼性予測器よりも有利であるかどうかを検討する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Conformal prediction is a widely-used framework for distribution-free uncertainty quantification, which generates valid prediction sets at a user-defined significance level. However, this framework relies on the assumption that the data-generating distribution is exchangeable, a condition that is frequently violated in time-series and other structured data. In such cases, the validity guarantees of conformal prediction break down. Adaptive conformal inference (ACI) has been proposed as a solution for non-exchangeable data by dynamically adjusting the significance level to retain at least finite sample guarantees on the marginal coverage error rate. This paper demonstrates that, despite its name, ACI does not strictly require the use of conformal predictors. Instead, it can operate effectively with the more general concept of a confidence predictor, which is often computationally simpler. The key requirement is that larger significance levels correspond to smaller prediction sets, a property known as nested prediction sets. Through experiments on synthetic and real-world data, we investigate whether ACI with conformal predictors offers advantages over confidence predictors. Our results indicate that confidence predictors can perform just as well, and sometimes better than conformal predictors in some cases, although further empirical studies are needed to determine when one approach may be preferable.
- Abstract(参考訳): コンフォーマル予測は、分散のない不確実性定量化のための広く使われているフレームワークであり、ユーザ定義の重要度レベルで有効な予測セットを生成する。
しかし、このフレームワークはデータ生成分布が交換可能であるという仮定に依存しており、これは時系列やその他の構造化データに頻繁に違反する条件である。
このような場合、共形予測の妥当性は低下する。
適応共形推論 (Adaptive conformal inference, ACI) は、重要度を動的に調整し、限界被覆誤差率の少なくとも有限サンプル保証を維持することで、非交換データに対する解として提案されている。
本稿は, ACI の名称にもかかわらず, 厳密には共形予測器の使用を必要としないことを示す。
代わりに、より一般的な信頼性予測器の概念で効果的に動作する。
重要な要件は、より大きな意味レベルがより小さな予測セット、すなわちネスト予測セットと呼ばれる性質に対応することである。
合成および実世界のデータに関する実験を通じて、共形予測器を用いたACIが信頼予測器よりも有利であるかどうかを検討する。
以上の結果から,信頼度予測器は共形予測器と同等に機能し,時には共形予測器より優れていることが示唆された。
関連論文リスト
- Provably Reliable Conformal Prediction Sets in the Presence of Data Poisoning [53.42244686183879]
コンフォーマル予測は、モデルに依存しない、分布のない不確実性定量化を提供する。
しかし、敵が訓練データと校正データを操作した場合の毒殺攻撃では、共形予測は信頼性が低い。
信頼性予測セット (RPS): 汚染下での信頼性保証を証明可能な共形予測セットを構築するための最初の効率的な方法を提案する。
論文 参考訳(メタデータ) (2024-10-13T15:37:11Z) - Online scalable Gaussian processes with conformal prediction for guaranteed coverage [32.21093722162573]
結果として生じる不確実な値の整合性は、学習関数がGPモデルで指定された特性に従うという前提に基づいている。
提案するGPは,分散のない後処理フレームワークである共形予測(CP)を用いて,有意なカバレッジで予測セットを生成する。
論文 参考訳(メタデータ) (2024-10-07T19:22:15Z) - Calibrated Probabilistic Forecasts for Arbitrary Sequences [58.54729945445505]
実際のデータストリームは、分散シフトやフィードバックループ、敵アクターによって予測不可能に変化する可能性がある。
データがどのように進化するかに関わらず、有効な不確実性推定を保証するための予測フレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-27T21:46:42Z) - Probabilistic Conformal Prediction with Approximate Conditional Validity [81.30551968980143]
本研究では,共形手法の柔軟性と条件分布の推定を組み合わせ,予測セットを生成する手法を開発した。
我々の手法は、条件付きカバレッジの観点から既存の手法よりも一貫して優れています。
論文 参考訳(メタデータ) (2024-07-01T20:44:48Z) - The Penalized Inverse Probability Measure for Conformal Classification [0.5172964916120902]
この研究は、Pinalized Inverse Probability(PIP)の非整合性スコアと、その正規化バージョンRePIPを導入し、効率性と情報性の両方を共同で最適化する。
この研究は、PIPに基づく共形分類器が、他の非整合性対策と比較して正確に望ましい振る舞いを示し、情報性と効率のバランスを保っていることを示す。
論文 参考訳(メタデータ) (2024-06-13T07:37:16Z) - Robust Conformal Prediction Using Privileged Information [17.886554223172517]
本研究では,トレーニングデータの破損に対して堅牢な,保証されたカバレッジ率で予測セットを生成する手法を開発した。
我々のアプローチは、i.d仮定の下で有効となる予測セットを構築するための強力なフレームワークである共形予測に基づいている。
論文 参考訳(メタデータ) (2024-06-08T08:56:47Z) - Efficient Conformal Prediction under Data Heterogeneity [79.35418041861327]
コンフォーマル予測(CP)は不確実性定量化のための頑健な枠組みである。
非交換性に対処するための既存のアプローチは、最も単純な例を超えて計算不可能なメソッドにつながる。
この研究は、比較的一般的な非交換可能なデータ分布に対して証明可能な信頼セットを生成する、CPに新しい効率的なアプローチを導入する。
論文 参考訳(メタデータ) (2023-12-25T20:02:51Z) - Conformal Prediction for Deep Classifier via Label Ranking [29.784336674173616]
コンフォーマル予測(Conformal prediction)は、予測セットを所望のカバレッジ保証で生成する統計フレームワークである。
我々は、$textitSorted Adaptive Prediction Sets$ (SAPS)という新しいアルゴリズムを提案する。
SAPSは最大ソフトマックス確率を除いて全ての確率値を捨てる。
論文 参考訳(メタデータ) (2023-10-10T08:54:14Z) - Federated Conformal Predictors for Distributed Uncertainty
Quantification [83.50609351513886]
コンフォーマル予測は、機械学習において厳密な不確実性定量化を提供するための一般的なパラダイムとして現れつつある。
本稿では,共形予測を連邦学習環境に拡張する。
本稿では、FL設定に適した部分交換可能性の弱い概念を提案し、それをフェデレート・コンフォーマル予測フレームワークの開発に利用する。
論文 参考訳(メタデータ) (2023-05-27T19:57:27Z) - Improving Adaptive Conformal Prediction Using Self-Supervised Learning [72.2614468437919]
我々は、既存の予測モデルの上に自己教師付きプレテキストタスクを持つ補助モデルを訓練し、自己教師付きエラーを付加的な特徴として用いて、非整合性スコアを推定する。
合成データと実データの両方を用いて、効率(幅)、欠陥、共形予測間隔の超過といった付加情報の利点を実証的に実証する。
論文 参考訳(メタデータ) (2023-02-23T18:57:14Z) - Optimized conformal classification using gradient descent approximation [0.2538209532048866]
コンフォーマル予測器は、ユーザ定義の信頼性レベルで予測を行うことができる。
我々は,共形予測器を直接最大予測効率で訓練する手法を検討する。
実世界の複数のデータセット上で本手法を検証し,本手法が有望であることを示す。
論文 参考訳(メタデータ) (2021-05-24T13:14:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。