Hyperbolic Image-and-Pointcloud Contrastive Learning for 3D Classification
- URL: http://arxiv.org/abs/2409.15810v1
- Date: Tue, 24 Sep 2024 07:13:37 GMT
- Title: Hyperbolic Image-and-Pointcloud Contrastive Learning for 3D Classification
- Authors: Naiwen Hu, Haozhe Cheng, Yifan Xie, Pengcheng Shi, Jihua Zhu,
- Abstract summary: We propose a hyperbolic image-and-pointcloud contrastive learning method (HyperIPC)
For the intra-modal branch, we rely on the intrinsic geometric structure to explore the hyperbolic embedding representation of point cloud.
For the cross-modal branch, we leverage images to guide the point cloud in establishing strong semantic hierarchical correlations.
- Score: 14.439996427728483
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 3D contrastive representation learning has exhibited remarkable efficacy across various downstream tasks. However, existing contrastive learning paradigms based on cosine similarity fail to deeply explore the potential intra-modal hierarchical and cross-modal semantic correlations about multi-modal data in Euclidean space. In response, we seek solutions in hyperbolic space and propose a hyperbolic image-and-pointcloud contrastive learning method (HyperIPC). For the intra-modal branch, we rely on the intrinsic geometric structure to explore the hyperbolic embedding representation of point cloud to capture invariant features. For the cross-modal branch, we leverage images to guide the point cloud in establishing strong semantic hierarchical correlations. Empirical experiments underscore the outstanding classification performance of HyperIPC. Notably, HyperIPC enhances object classification results by 2.8% and few-shot classification outcomes by 5.9% on ScanObjectNN compared to the baseline. Furthermore, ablation studies and confirmatory testing validate the rationality of HyperIPC's parameter settings and the effectiveness of its submodules.
Related papers
- Hyperbolic Delaunay Geometric Alignment [52.835250875177756]
We propose a similarity score for comparing datasets in a hyperbolic space.
The core idea is counting the edges of the hyperbolic Delaunay graph connecting datapoints across the given sets.
We provide an empirical investigation on synthetic and real-life biological data and demonstrate that HyperDGA outperforms the hyperbolic version of classical distances between sets.
arXiv Detail & Related papers (2024-04-12T17:14:58Z) - IPoD: Implicit Field Learning with Point Diffusion for Generalizable 3D Object Reconstruction from Single RGB-D Images [50.4538089115248]
Generalizable 3D object reconstruction from single-view RGB-D images remains a challenging task.
We propose a novel approach, IPoD, which harmonizes implicit field learning with point diffusion.
Experiments conducted on the CO3D-v2 dataset affirm the superiority of IPoD, achieving 7.8% improvement in F-score and 28.6% in Chamfer distance over existing methods.
arXiv Detail & Related papers (2024-03-30T07:17:37Z) - Superpixel Graph Contrastive Clustering with Semantic-Invariant
Augmentations for Hyperspectral Images [64.72242126879503]
Hyperspectral images (HSI) clustering is an important but challenging task.
We first use 3-D and 2-D hybrid convolutional neural networks to extract the high-order spatial and spectral features of HSI.
We then design a superpixel graph contrastive clustering model to learn discriminative superpixel representations.
arXiv Detail & Related papers (2024-03-04T07:40:55Z) - Multilevel Saliency-Guided Self-Supervised Learning for Image Anomaly
Detection [15.212031255539022]
Anomaly detection (AD) is a fundamental task in computer vision.
We propose CutSwap, which leverages saliency guidance to incorporate semantic cues for augmentation.
CutSwap achieves state-of-the-art AD performance on two mainstream AD benchmark datasets.
arXiv Detail & Related papers (2023-11-30T08:03:53Z) - HyperDID: Hyperspectral Intrinsic Image Decomposition with Deep Feature
Embedding [9.32185717565188]
This study rethinks hyperspectral intrinsic image decomposition for classification tasks by introducing deep feature embedding.
The proposed framework, HyperDID, incorporates the Environmental Feature Module (EFM) and Categorical Feature Module (CFM) to extract intrinsic features.
Experimental results across three commonly used datasets validate the effectiveness of HyperDID in improving hyperspectral image classification performance.
arXiv Detail & Related papers (2023-11-25T02:05:10Z) - HKNAS: Classification of Hyperspectral Imagery Based on Hyper Kernel
Neural Architecture Search [104.45426861115972]
We propose to directly generate structural parameters by utilizing the specifically designed hyper kernels.
We obtain three kinds of networks to separately conduct pixel-level or image-level classifications with 1-D or 3-D convolutions.
A series of experiments on six public datasets demonstrate that the proposed methods achieve state-of-the-art results.
arXiv Detail & Related papers (2023-04-23T17:27:40Z) - Hyperbolic Contrastive Learning [12.170564544949308]
We propose a novel contrastive learning framework to learn semantic relationships in the hyperbolic space.
We show that our proposed method achieves better results on self-supervised pretraining, supervised classification, and higher robust accuracy than baseline methods.
arXiv Detail & Related papers (2023-02-02T20:47:45Z) - Deep Diversity-Enhanced Feature Representation of Hyperspectral Images [87.47202258194719]
We rectify 3D convolution by modifying its topology to enhance the rank upper-bound.
We also propose a novel diversity-aware regularization (DA-Reg) term that acts on the feature maps to maximize independence among elements.
To demonstrate the superiority of the proposed Re$3$-ConvSet and DA-Reg, we apply them to various HS image processing and analysis tasks.
arXiv Detail & Related papers (2023-01-15T16:19:18Z) - Unsupervised Learning on 3D Point Clouds by Clustering and Contrasting [11.64827192421785]
unsupervised representation learning is a promising direction to auto-extract features without human intervention.
This paper proposes a general unsupervised approach, named textbfConClu, to perform the learning of point-wise and global features.
arXiv Detail & Related papers (2022-02-05T12:54:17Z) - Large-Scale Hyperspectral Image Clustering Using Contrastive Learning [18.473767002905433]
We present a scalable deep online clustering model, named Spectral-Spatial Contrastive Clustering (SSCC)
We exploit a symmetric twin neural network comprised of a projection head with a dimensionality of the cluster number to conduct dual contrastive learning from a spectral-spatial augmentation pool.
The resulting approach is trained in an end-to-end fashion by batch-wise optimization, making it robust in large-scale data and resulting in good generalization ability for unseen data.
arXiv Detail & Related papers (2021-11-15T17:50:06Z) - DyCo3D: Robust Instance Segmentation of 3D Point Clouds through Dynamic
Convolution [136.7261709896713]
We propose a data-driven approach that generates the appropriate convolution kernels to apply in response to the nature of the instances.
The proposed method achieves promising results on both ScanetNetV2 and S3DIS.
It also improves inference speed by more than 25% over the current state-of-the-art.
arXiv Detail & Related papers (2020-11-26T14:56:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.