論文の概要: SEA-ViT: Sea Surface Currents Forecasting Using Vision Transformer and GRU-Based Spatio-Temporal Covariance Modeling
- arxiv url: http://arxiv.org/abs/2409.16313v2
- Date: Thu, 26 Sep 2024 01:26:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-06 17:42:27.622425
- Title: SEA-ViT: Sea Surface Currents Forecasting Using Vision Transformer and GRU-Based Spatio-Temporal Covariance Modeling
- Title(参考訳): SEA-ViT:視覚変換器とGRUに基づく時空間共分散モデリングによる海面電流予測
- Authors: Teerapong Panboonyuen,
- Abstract要約: 本稿では,Vision TransformerとGate Recurrent Unitsを統合した高度なディープラーニングモデルSEA-ViTを紹介する。
SEA-ViTは、30年以上にわたる豊富なデータセットを活用することで、複雑な依存関係を解き放つように設計されている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Forecasting sea surface currents is essential for applications such as maritime navigation, environmental monitoring, and climate analysis, particularly in regions like the Gulf of Thailand and the Andaman Sea. This paper introduces SEA-ViT, an advanced deep learning model that integrates Vision Transformer (ViT) with bidirectional Gated Recurrent Units (GRUs) to capture spatio-temporal covariance for predicting sea surface currents (U, V) using high-frequency radar (HF) data. The name SEA-ViT is derived from ``Sea Surface Currents Forecasting using Vision Transformer,'' highlighting the model's emphasis on ocean dynamics and its use of the ViT architecture to enhance forecasting capabilities. SEA-ViT is designed to unravel complex dependencies by leveraging a rich dataset spanning over 30 years and incorporating ENSO indices (El Ni\~no, La Ni\~na, and neutral phases) to address the intricate relationship between geographic coordinates and climatic variations. This development enhances the predictive capabilities for sea surface currents, supporting the efforts of the Geo-Informatics and Space Technology Development Agency (GISTDA) in Thailand's maritime regions. The code and pretrained models are available at \url{https://github.com/kaopanboonyuen/gistda-ai-sea-surface-currents}.
- Abstract(参考訳): 海洋航行、環境モニタリング、気候分析などの応用、特にタイ湾やアンダマン海などの地域では、海面流の予測が不可欠である。
本稿では,視覚変換器(ViT)を双方向GRU(Gated Recurrent Units)と統合した高度な深層学習モデルSEA-ViTを紹介し,高周波数レーダ(HF)データを用いて海面電流(U,V)の時空間共分散を推定する。
SEA-ViTという名前は '`Sea Surface Currents Forecasting using Vision Transformer' に由来するもので、モデルが海洋力学に重点を置いており、予測能力を高めるためにViTアーキテクチャを使用していることを強調している。
SEA-ViTは、30年以上にわたる豊富なデータセットを活用して、座標座標と気候変動の間の複雑な関係に対処するためにENSO指標(El Ni\~no, La Ni\~na, neutral phases)を組み込むことによって、複雑な依存関係を解き放つように設計されている。
この開発は海流の予測能力を高め、タイの海洋地域の地球情報・宇宙技術開発庁(GISTDA)の努力を支援している。
コードと事前訓練されたモデルは、 \url{https://github.com/kaopanboonyuen/gistda-ai- Surface-currents} で利用可能である。
関連論文リスト
- Regional Ocean Forecasting with Hierarchical Graph Neural Networks [1.4146420810689422]
我々は、高解像度の中距離海洋予測用に設計されたニューラルネットワークであるSeaCastを紹介する。
SeaCastはグラフベースのフレームワークを使用して、海洋グリッドの複雑な幾何学を処理し、地域の海洋環境に合わせて外部の強制データを統合する。
コペルニクス海洋局が提供した地中海の運用数値モデルを用いて,高空間分解能実験により本手法の有効性を検証した。
論文 参考訳(メタデータ) (2024-10-15T17:34:50Z) - Outlier detection in maritime environments using AIS data and deep recurrent architectures [5.399126243770847]
本稿では,海上監視のための深部再帰モデルに基づく手法を,公開可能な自動識別システム(AIS)データ上で提案する。
このセットアップはディープ・リカレント・ニューラルネットワーク(RNN)ベースのモデルを使用して、観測された船の動きパターンを符号化し、再構築する。
提案手法は,観測された動作パターンと再構成された動作パターンの計算誤差に対するしきい値決定機構に基づく。
論文 参考訳(メタデータ) (2024-06-14T12:15:15Z) - A Bionic Data-driven Approach for Long-distance Underwater Navigation with Anomaly Resistance [59.21686775951903]
様々な動物が環境の手がかりを使って正確なナビゲーションをしている。
動物航法にインスパイアされたこの研究は、長距離水中航法のためのバイオニックでデータ駆動のアプローチを提案する。
提案手法では,GPSシステムや地理地図を必要とせず,測地データを用いてナビゲーションを行う。
論文 参考訳(メタデータ) (2024-02-06T13:20:56Z) - Surrogate Modelling for Sea Ice Concentration using Lightweight Neural
Ensemble [0.3626013617212667]
本稿ではLANE-SIという適応的な代理モデル手法を提案する。
異なる損失関数を持つ比較的単純な深層学習モデルのアンサンブルを用いて、特定水域における海氷濃度の予測を行う。
我々は,カラ海における最先端物理ベースの予測システムSEAS5に対して,20%の改善を実現している。
論文 参考訳(メタデータ) (2023-12-07T14:48:30Z) - Multi-decadal Sea Level Prediction using Neural Networks and Spectral
Clustering on Climate Model Large Ensembles and Satellite Altimeter Data [0.0]
本稿では,この長期海水準予測の挑戦的応用における機械学習(ML)の可能性を示す。
我々は,海面トレンドを予測できる完全連結ニューラルネットワーク(FCNN)を用いた教師あり学習フレームワークを開発した。
また、空間データセットを分割し、各セグメント領域に専用のMLモデルを学習する効果を示す。
論文 参考訳(メタデータ) (2023-10-06T19:06:43Z) - Data-Driven Short-Term Daily Operational Sea Ice Regional Forecasting [52.77986479871782]
地球温暖化は北極を海洋活動に利用し、信頼性の高い海氷予測の需要を生み出した。
本研究では,海氷予測のためのU-Netモデルの性能を,今後10日間にわたって検証した。
この深層学習モデルは、気象データの追加と複数の地域での訓練により、単純なベースラインをかなりの差で上回り、その品質を向上させることができることを示す。
論文 参考訳(メタデータ) (2022-10-17T09:14:35Z) - Learning-based estimation of in-situ wind speed from underwater
acoustics [58.293528982012255]
水中音響から風速時系列を検索するための深層学習手法を提案する。
我々のアプローチは、事前の物理知識と計算効率の両面から恩恵を受けるために、データ同化と学習ベースのフレームワークをブリッジする。
論文 参考訳(メタデータ) (2022-08-18T15:27:40Z) - Predicting Future Occupancy Grids in Dynamic Environment with
Spatio-Temporal Learning [63.25627328308978]
本稿では,将来の占有予測を生成するための時間的予測ネットワークパイプラインを提案する。
現在のSOTAと比較して、我々の手法は3秒の長い水平線での占有を予測している。
我々は、さらなる研究を支援するために、nulisに基づくグリッド占有データセットを公開します。
論文 参考訳(メタデータ) (2022-05-06T13:45:32Z) - Analysis of the HiSCORE Simulated Events in TAIGA Experiment Using
Convolutional Neural Networks [77.34726150561087]
本稿では,エアシャワー特性決定における畳み込みニューラルネットワークの利用について検討する。
我々は、CNNを使ってHiSCOREイベントを分析し、それらをイメージとして扱います。
また,エアシャワーのパラメータの決定に関する予備的な結果も提示した。
論文 参考訳(メタデータ) (2021-12-19T15:18:56Z) - SALT: Sea lice Adaptive Lattice Tracking -- An Unsupervised Approach to
Generate an Improved Ocean Model [72.3183990520267]
シーライス分散と分布を効率的に推定するためのシーライス適応格子追跡手法を提案する。
具体的には、局所的な海洋特性に基づいて、オーシャンモデルの格子グラフにノードをマージすることで、適応的な空間メッシュを生成する。
提案手法は, 変動する気候下での海洋ライス寄生圧マップの予測モデルにより, 積極的養殖管理の促進を約束するものである。
論文 参考訳(メタデータ) (2021-06-24T17:29:42Z) - Filtering Internal Tides From Wide-Swath Altimeter Data Using
Convolutional Neural Networks [9.541153192112194]
本稿では畳み込みニューラルネットワーク(ConvNets)を用いて、内潮信号のないフィールドを推定する。
また,海面温度(SST)などの他の海面変数からの追加データについても検討した。
論文 参考訳(メタデータ) (2020-05-03T14:02:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。