Moner: Motion Correction in Undersampled Radial MRI with Unsupervised Neural Representation
- URL: http://arxiv.org/abs/2409.16921v3
- Date: Thu, 06 Feb 2025 05:19:51 GMT
- Title: Moner: Motion Correction in Undersampled Radial MRI with Unsupervised Neural Representation
- Authors: Qing Wu, Chenhe Du, Xuanyu Tian, Jingyi Yu, Yuyao Zhang, Hongjiang Wei,
- Abstract summary: Motion correction (MoCo) in radial MRI is a challenging problem due to the unpredictability of subject's motion.
We propose Moner, an unsupervised MoCo method that jointly solves artifact-free MR images and accurate motion from rigid motion-corrupted k-space data.
Experiments on multiple MRI datasets show our Moner achieves performance comparable to SOTA MoCo techniques on in-domain data.
- Score: 31.431342571006123
- License:
- Abstract: Motion correction (MoCo) in radial MRI is a challenging problem due to the unpredictability of subject's motion. Current state-of-the-art (SOTA) MoCo algorithms often use extensive high-quality MR images to pre-train neural networks, obtaining excellent reconstructions. However, the need for large-scale datasets significantly increases costs and limits model generalization. In this work, we propose Moner, an unsupervised MoCo method that jointly solves artifact-free MR images and accurate motion from undersampled, rigid motion-corrupted k-space data, without requiring training data. Our core idea is to leverage the continuous prior of implicit neural representation (INR) to constrain this ill-posed inverse problem, enabling ideal solutions. Specifically, we incorporate a quasi-static motion model into the INR, granting its ability to correct subject's motion. To stabilize model optimization, we reformulate radial MRI as a back-projection problem using the Fourier-slice theorem. Additionally, we propose a novel coarse-to-fine hash encoding strategy, significantly enhancing MoCo accuracy. Experiments on multiple MRI datasets show our Moner achieves performance comparable to SOTA MoCo techniques on in-domain data, while demonstrating significant improvements on out-of-domain data. The code is available at: https://github.com/iwuqing/Moner
Related papers
- ContextMRI: Enhancing Compressed Sensing MRI through Metadata Conditioning [51.26601171361753]
We propose ContextMRI, a text-conditioned diffusion model for MRI that integrates granular metadata into the reconstruction process.
We show that increasing the fidelity of metadata, ranging from slice location and contrast to patient age, sex, and pathology, systematically boosts reconstruction performance.
arXiv Detail & Related papers (2025-01-08T05:15:43Z) - Highly Accelerated MRI via Implicit Neural Representation Guided Posterior Sampling of Diffusion Models [2.5412006057370893]
Implicit neural representation (INR) has emerged as a powerful paradigm for solving inverse problems.
Our proposed framework can be a generalizable framework to solve inverse problems in other medical imaging tasks.
arXiv Detail & Related papers (2024-07-03T01:37:56Z) - Ambient Diffusion Posterior Sampling: Solving Inverse Problems with
Diffusion Models trained on Corrupted Data [56.81246107125692]
Ambient Diffusion Posterior Sampling (A-DPS) is a generative model pre-trained on one type of corruption.
We show that A-DPS can sometimes outperform models trained on clean data for several image restoration tasks in both speed and performance.
We extend the Ambient Diffusion framework to train MRI models with access only to Fourier subsampled multi-coil MRI measurements.
arXiv Detail & Related papers (2024-03-13T17:28:20Z) - RoHM: Robust Human Motion Reconstruction via Diffusion [58.63706638272891]
RoHM is an approach for robust 3D human motion reconstruction from monocular RGB(-D) videos.
It conditioned on noisy and occluded input data, reconstructs complete, plausible motions in consistent global coordinates.
Our method outperforms state-of-the-art approaches qualitatively and quantitatively, while being faster at test time.
arXiv Detail & Related papers (2024-01-16T18:57:50Z) - DiffCMR: Fast Cardiac MRI Reconstruction with Diffusion Probabilistic
Models [11.068359534951783]
DiffCMR perceives conditioning signals from the under-sampled MRI image slice and generates its corresponding fully-sampled MRI image slice.
We validate DiffCMR with cine reconstruction and T1/T2 mapping tasks on MICCAI 2023 Cardiac MRI Reconstruction Challenge dataset.
Results show that our method achieves state-of-the-art performance, exceeding previous methods by a significant margin.
arXiv Detail & Related papers (2023-12-08T06:11:21Z) - JSMoCo: Joint Coil Sensitivity and Motion Correction in Parallel MRI
with a Self-Calibrating Score-Based Diffusion Model [3.3053426917821134]
We propose to jointly estimate the motion parameters and coil sensitivity maps for under-sampled MRI reconstruction.
Our method is capable of reconstructing high-quality MRI images from sparsely-sampled k-space data, even affected by motion.
arXiv Detail & Related papers (2023-10-14T17:11:25Z) - A Conditional Normalizing Flow for Accelerated Multi-Coil MR Imaging [12.31503281925152]
We develop a novel conditional normalizing flow (CNF) that infers the signal component in the measurement operator's nullspace, which is later combined with measured data to form complete images.
Using fastMRI brain and knee data, we demonstrate fast inference and accuracy that surpasses recent posterior sampling techniques for MRI.
arXiv Detail & Related papers (2023-06-02T15:49:26Z) - CuNeRF: Cube-Based Neural Radiance Field for Zero-Shot Medical Image Arbitrary-Scale Super Resolution [78.734927709231]
Medical image arbitrary-scale super-resolution (MIASSR) has recently gained widespread attention, aiming to super sample medical volumes at arbitrary scales via a single model.
We propose Cube-based Neural Radiance Field (CuNeRF), a zero-shot MIASSR framework that can yield medical images at arbitrary scales and viewpoints in a continuous domain.
arXiv Detail & Related papers (2023-03-28T18:36:19Z) - CoRRECT: A Deep Unfolding Framework for Motion-Corrected Quantitative R2* Mapping [9.783361575598025]
CoRRECT is a unified deep unfolding (DU) framework for Quantitative MRI (qMRI)
It consists of a model-based end-to-end neural network, a method for motion-artifact reduction, and a self-supervised learning scheme.
Our results on experimentally collected multi-Gradient-Recalled Echo (mGRE) MRI data show that CoRRECT recovers motion and inhomogeneity artifact-free R2* maps in highly accelerated acquisition settings.
arXiv Detail & Related papers (2022-10-12T15:49:51Z) - Denoising Diffusion Restoration Models [110.1244240726802]
Denoising Diffusion Restoration Models (DDRM) is an efficient, unsupervised posterior sampling method.
We demonstrate DDRM's versatility on several image datasets for super-resolution, deblurring, inpainting, and colorization.
arXiv Detail & Related papers (2022-01-27T20:19:07Z) - Robust Compressed Sensing MRI with Deep Generative Priors [84.69062247243953]
We present the first successful application of the CSGM framework on clinical MRI data.
We train a generative prior on brain scans from the fastMRI dataset, and show that posterior sampling via Langevin dynamics achieves high quality reconstructions.
arXiv Detail & Related papers (2021-08-03T08:52:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.