論文の概要: Quantum-Classical Sentiment Analysis
- arxiv url: http://arxiv.org/abs/2409.16928v1
- Date: Wed, 25 Sep 2024 13:40:19 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-27 03:35:11.277200
- Title: Quantum-Classical Sentiment Analysis
- Title(参考訳): 量子古典感度解析
- Authors: Mario Bifulco, Luca Roversi,
- Abstract要約: 感情分析におけるHCQC(Hybrid classical-quantum classifier)の適用について検討する。
HCQCは分類精度ではTransformerと比較して性能が劣るが,適度に良い近似解に収束するのにはかなり時間がかかることが示唆された。
この実験はまた、D-Wave特性によって部分的には開示されていないHCQCにおける重要なボトルネックを明らかにした。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this study, we initially investigate the application of a hybrid classical-quantum classifier (HCQC) for sentiment analysis, comparing its performance against the classical CPLEX classifier and the Transformer architecture. Our findings indicate that while the HCQC underperforms relative to the Transformer in terms of classification accuracy, but it requires significantly less time to converge to a reasonably good approximate solution. This experiment also reveals a critical bottleneck in the HCQC, whose architecture is partially undisclosed by the D-Wave property. To address this limitation, we propose a novel algorithm based on the algebraic decomposition of QUBO models, which enhances the time the quantum processing unit can allocate to problem-solving tasks.
- Abstract(参考訳): 本研究ではまず,従来のCPLEX分類器とTransformerアーキテクチャとの比較を行い,感情分析におけるHCQCの適用について検討する。
HCQCは分類精度ではTransformerと比較して性能が劣るが,適度に良い近似解に収束するのにはかなり時間がかかることが示唆された。
この実験はまた、アーキテクチャがD-Wave特性によって部分的には開示されていないHCQCにおける重要なボトルネックを明らかにした。
そこで本研究では,QUBOモデルの代数的分解に基づく新しいアルゴリズムを提案する。
関連論文リスト
- Benchmarking hybrid digitized-counterdiabatic quantum optimization [2.983864486954652]
ハイブリッドデジタルカウンテルダイバティック量子コンピューティング(DCQC)は、短期量子コンピュータの能力を活用するための有望なアプローチである。
本研究では,デジタル・カウンテル・ダイアバティック・アプローチと組み合わせて,様々な古典の収束挙動と解の質を解析する。
論文 参考訳(メタデータ) (2024-01-18T10:05:07Z) - Variational Quantum Approximate Spectral Clustering for Binary
Clustering Problems [0.7550566004119158]
本稿では,変分量子近似スペクトルクラスタリング(VQASC)アルゴリズムを提案する。
VQASCは、伝統的に古典的な問題で必要とされるシステムサイズ、Nよりも少ないパラメータの最適化を必要とする。
合成と実世界の両方のデータセットから得られた数値結果について述べる。
論文 参考訳(メタデータ) (2023-09-08T17:54:42Z) - An Optimization-based Deep Equilibrium Model for Hyperspectral Image
Deconvolution with Convergence Guarantees [71.57324258813675]
本稿では,ハイパースペクトル画像のデコンボリューション問題に対処する新しい手法を提案する。
新しい最適化問題を定式化し、学習可能な正規化器をニューラルネットワークの形で活用する。
導出した反復解法は、Deep Equilibriumフレームワーク内の不動点計算問題として表現される。
論文 参考訳(メタデータ) (2023-06-10T08:25:16Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
単一画像超解像(SISR)問題を解くために,量子コンピューティングに基づくアルゴリズムを提案する。
提案したAQCアルゴリズムは、SISRの精度を維持しつつ、古典的なアナログよりも向上したスピードアップを実現する。
論文 参考訳(メタデータ) (2023-04-18T11:57:15Z) - QNEAT: Natural Evolution of Variational Quantum Circuit Architecture [95.29334926638462]
我々は、ニューラルネットワークの量子対する最も有望な候補として登場した変分量子回路(VQC)に注目した。
有望な結果を示す一方で、バレン高原、重みの周期性、アーキテクチャの選択など、さまざまな問題のために、VQCのトレーニングは困難である。
本稿では,VQCの重みとアーキテクチャの両方を最適化するために,自然進化にインスパイアされた勾配のないアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-04-14T08:03:20Z) - Problem-Dependent Power of Quantum Neural Networks on Multi-Class
Classification [83.20479832949069]
量子ニューラルネットワーク(QNN)は物理世界を理解する上で重要なツールとなっているが、その利点と限界は完全には理解されていない。
本稿では,多クラス分類タスクにおけるQCの問題依存力について検討する。
我々の研究はQNNの課題依存力に光を当て、その潜在的なメリットを評価するための実践的なツールを提供する。
論文 参考訳(メタデータ) (2022-12-29T10:46:40Z) - Toward Neural Network Simulation of Variational Quantum Algorithms [1.9723551683930771]
変分量子アルゴリズム(VQA)は、高次元線形代数の問題を最適化の1つとして再キャストするために、ハイブリッド量子古典アーキテクチャを利用する。
変動量子線形解法(VQLS)の例に着目して、古典最適化アルゴリズムを他のVQAと並列に構築できるかを問う。
このような構成はVQLSに適用でき、理論的には同様の形の他のVQAに拡張できるパラダイムが得られる。
論文 参考訳(メタデータ) (2022-11-05T15:46:47Z) - Faster variational quantum algorithms with quantum kernel-based
surrogate models [0.0]
本稿では,雑音量子プロセッサ上での小型から中規模の変分アルゴリズムを提案する。
提案手法は,計算負荷をこれらのハイブリッドアルゴリズムの古典的成分にシフトさせ,量子プロセッサへのクエリ数を劇的に削減する。
論文 参考訳(メタデータ) (2022-11-02T14:11:25Z) - Oracle separations of hybrid quantum-classical circuits [68.96380145211093]
量子計算の2つのモデル: CQ_dとQC_d。
CQ_dは、d-d-deepth量子コンピュータのシナリオを何度も捉え、QC_dは測定ベースの量子計算に類似している。
CQ_dとQC_dの類似性にもかかわらず、2つのモデルは本質的にはCQ_d $nsubseteq$QC_dとQC_d $nsubseteq$CQ_dである。
論文 参考訳(メタデータ) (2022-01-06T03:10:53Z) - Quantum Machine Learning with SQUID [64.53556573827525]
分類問題に対するハイブリッド量子古典アルゴリズムを探索するオープンソースフレームワークであるScaled QUantum IDentifier (SQUID)を提案する。
本稿では、一般的なMNISTデータセットから標準バイナリ分類問題にSQUIDを使用する例を示す。
論文 参考訳(メタデータ) (2021-04-30T21:34:11Z) - An optimal quantum sampling regression algorithm for variational
eigensolving in the low qubit number regime [0.0]
量子サンプリング回帰(QSR)は、代替の量子古典的アルゴリズムである。
低量子ビット数構造における時間的複雑さに基づいて,その利用事例を分析した。
ベンチマーク問題に対するアルゴリズムの有効性を示す。
論文 参考訳(メタデータ) (2020-12-04T00:01:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。