論文の概要: AI-Driven Risk-Aware Scheduling for Active Debris Removal Missions
- arxiv url: http://arxiv.org/abs/2409.17012v1
- Date: Wed, 25 Sep 2024 15:16:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-27 03:15:16.413721
- Title: AI-Driven Risk-Aware Scheduling for Active Debris Removal Missions
- Title(参考訳): アクティブデブリ除去ミッションのためのAI駆動型リスクアウェアスケジューリング
- Authors: Antoine Poupon, Hugo de Rohan Willner, Pierre Nikitits, Adam Abdin,
- Abstract要約: 低地球軌道でのデブリは、宇宙の持続可能性と宇宙船の安全性に対する重大な脅威である。
装甲輸送車両(OTV)は破片の軌道離脱を促進し、将来の衝突リスクを減らす。
深部補強学習(DRL)に基づく装甲決定計画モデルを構築し,OTVを最適デブリ除去シークエンシングを計画する。
提案手法を用いることで、最適なミッションプランを見つけ、衝突リスクの高い破片のリスクハンドリングを含む自律的に計画の更新を学べることが示されている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The proliferation of debris in Low Earth Orbit (LEO) represents a significant threat to space sustainability and spacecraft safety. Active Debris Removal (ADR) has emerged as a promising approach to address this issue, utilising Orbital Transfer Vehicles (OTVs) to facilitate debris deorbiting, thereby reducing future collision risks. However, ADR missions are substantially complex, necessitating accurate planning to make the missions economically viable and technically effective. Moreover, these servicing missions require a high level of autonomous capability to plan under evolving orbital conditions and changing mission requirements. In this paper, an autonomous decision-planning model based on Deep Reinforcement Learning (DRL) is developed to train an OTV to plan optimal debris removal sequencing. It is shown that using the proposed framework, the agent can find optimal mission plans and learn to update the planning autonomously to include risk handling of debris with high collision risk.
- Abstract(参考訳): 低軌道軌道(LEO)における破片の拡散は、宇宙の持続可能性と宇宙船の安全性に対する重大な脅威である。
アクティブデブリ除去(ADR)はこの問題を解決するための有望なアプローチとして現れており、軌道移動車両(OTV)を利用してデブリの軌道離脱を容易にし、将来の衝突リスクを低減している。
しかし、ADRミッションはかなり複雑であり、経済的に有効かつ技術的に効果的にミッションを計画する必要がある。
さらに、これらのミッションは、進化する軌道条件の下で計画し、ミッション要求を変更するために高いレベルの自律能力を必要とする。
本稿では,deep Reinforcement Learning (DRL) に基づく自律型意思決定モデルを構築し,OTVの最適デブリ除去シークエンシングを計画する。
提案手法を用いることで、最適なミッションプランを見つけ、衝突リスクの高い破片のリスクハンドリングを含む自律的に計画の更新を学べることが示されている。
関連論文リスト
- On-orbit Servicing for Spacecraft Collision Avoidance With Autonomous Decision Making [0.0]
本研究は、宇宙船衝突回避演習(CAM)を支援するために、AIによるOOSミッションの実装を開発する。
本稿では、RL(Reinforcement Learning)を用いて訓練された自律型サーベイラを提案し、ターゲット衛星と宇宙デブリの衝突を自律的に検出し、絶滅危惧衛星とのランデブーとドッキングを行い、最適なCAMを実行する。
論文 参考訳(メタデータ) (2024-09-25T17:40:37Z) - ReGentS: Real-World Safety-Critical Driving Scenario Generation Made Stable [88.08120417169971]
機械学習に基づく自律運転システムは、現実世界のデータでは稀な安全クリティカルなシナリオで課題に直面していることが多い。
この研究は、軌道最適化によって複雑な現実世界の通常のシナリオを変更することによって、安全クリティカルな運転シナリオを生成することを検討する。
提案手法は、頑健なプランナーの訓練には役に立たない非現実的な発散軌道と避けられない衝突シナリオに対処する。
論文 参考訳(メタデータ) (2024-09-12T08:26:33Z) - A Distance Similarity-based Genetic Optimization Algorithm for Satellite Ground Network Planning Considering Feeding Mode [53.71516191515285]
衛星データ中継ミッションの送信効率の低さは、現在システムの構築を制約している問題となっている。
本研究では,タスク間の状態特性を考慮した距離類似性に基づく遺伝的最適化アルゴリズム(DSGA)を提案し,タスク間の類似性を決定するための重み付きユークリッド距離法を提案する。
論文 参考訳(メタデータ) (2024-08-29T06:57:45Z) - Spacecraft Autonomous Decision-Planning for Collision Avoidance: a
Reinforcement Learning Approach [0.0]
本研究は、強化学習技術に基づく宇宙船における自律的なCA意思決定機能の実装を提案する。
提案フレームワークは,軌道上の破片の状態を不完全な監視し,正確な衝突回避策(CAM)を実行するためのポリシーをAIシステムが効果的に学習できるようにする。
目的は、CAMを自律的に実施するための意思決定プロセスを、人間の介入なしに宇宙船に委譲することである。
論文 参考訳(メタデータ) (2023-10-29T10:15:33Z) - HALO: Hazard-Aware Landing Optimization for Autonomous Systems [1.5414037351414311]
本稿では,ハザード検出,最適着陸軌道生成,緊急計画課題に対処する認識計画手法を提案する。
本研究では,HALSS(Hazard-Aware Landing Site Selection)とAdaptive Deferred-Decision Trajectory Optimization(Adaptive Deferred-Decision Trajectory Optimization,-DDTO)という2つの新しいアルゴリズムを開発し,統合し,認識と計画の課題に対処する。
シミュレーションした火星環境を用いたアプローチの有効性を実証し, 組み合わせた認識計画法が着地成功率を高めることを示す。
論文 参考訳(メタデータ) (2023-04-04T07:20:06Z) - Reinforcement Learning-Based Air Traffic Deconfliction [7.782300855058585]
本研究は,2機の水平分離を自動化することに焦点を当て,障害物回避問題を2次元サロゲート最適化課題として提示する。
強化学習(RL)を用いて、回避ポリシーを最適化し、ダイナミクス、インタラクション、意思決定をモデル化する。
提案システムは,安全要件を満たす高速かつ達成可能な回避軌道を生成する。
論文 参考訳(メタデータ) (2023-01-05T00:37:20Z) - GEO satellites on-orbit repairing mission planning with mission deadline
constraint using a large neighborhood search-genetic algorithm [2.106508530625051]
本稿では,多対多の軌道修正ミッション計画のための大規模近傍探索適応型遺伝的アルゴリズム(LNS-AGA)を提案する。
多くの軌道上の修理シナリオでは、いくつかのサーベイリング宇宙船とターゲット衛星がGEO軌道にあり、RAANと真の異常がある。
ミッションの目的は、すべての衛星が修理された全ての衛星の総コストを最小化するために、すべての衛星の最適なサービスシーケンスと軌道ランデブー時間を見つけることである。
論文 参考訳(メタデータ) (2021-10-08T03:33:37Z) - Efficient UAV Trajectory-Planning using Economic Reinforcement Learning [65.91405908268662]
UAV間でタスクを分散するための経済取引に触発された新しい強化学習アルゴリズムであるREPlannerを紹介します。
エージェントが協力し、リソースを競うことができるマルチエージェント経済ゲームとして、パス計画問題を策定します。
UAV協力によるタスク分布の計算を行うため、Swarmサイズの変化に対して非常に耐性が高い。
論文 参考訳(メタデータ) (2021-03-03T20:54:19Z) - Deep Structured Reactive Planning [94.92994828905984]
自動運転のための新しいデータ駆動型リアクティブ計画目標を提案する。
本モデルは,非常に複雑な操作を成功させる上で,非反応性変種よりも優れることを示す。
論文 参考訳(メタデータ) (2021-01-18T01:43:36Z) - Cautious Adaptation For Reinforcement Learning in Safety-Critical
Settings [129.80279257258098]
都市運転のような現実の安全クリティカルな目標設定における強化学習(RL)は危険である。
非安全クリティカルな「ソース」環境でエージェントが最初に訓練する「安全クリティカル適応」タスクセットを提案する。
多様な環境における事前経験がリスクを見積もるためにエージェントに装備するという直感に基づくソリューションアプローチであるCARLを提案する。
論文 参考訳(メタデータ) (2020-08-15T01:40:59Z) - Integrating LEO Satellite and UAV Relaying via Reinforcement Learning
for Non-Terrestrial Networks [51.05735925326235]
低軌道軌道(LEO)衛星のメガコンステレーションは、低レイテンシで長距離通信を可能にする可能性がある。
軌道上の星座から選択されたLEO衛星を用いて、2つの遠距離地上端末間でパケットを転送する問題について検討する。
エンドツーエンドのデータレートを最大化するためには、衛星アソシエーションとHAPロケーションを最適化する必要がある。
本稿では, 深部強化学習(DRL)と新しい動作次元低減技術を用いてこの問題に対処する。
論文 参考訳(メタデータ) (2020-05-26T05:39:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。