論文の概要: Sociotechnical Approach to Enterprise Generative Artificial Intelligence (E-GenAI)
- arxiv url: http://arxiv.org/abs/2409.17408v1
- Date: Wed, 25 Sep 2024 22:39:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-29 00:01:07.898863
- Title: Sociotechnical Approach to Enterprise Generative Artificial Intelligence (E-GenAI)
- Title(参考訳): 企業生成人工知能(E-GenAI)への社会工学的アプローチ
- Authors: Leoncio Jimenez, Francisco Venegas,
- Abstract要約: この記事では、プロバイダ、エンタープライズ、顧客間の関係に焦点を当てた、ビジネスエコシステムに焦点を当てている。
この記事では、SCM、ERP、CRMのGenAIベースのプラットフォームと、BI、FL、TRIZ、KM、IKMのGenAIベースのプラットフォームを統合するE-GenAIビジネスエコシステムについて説明する。
本研究では,Large Language Models (LLM) のダイナミクスを理解するために,有限オートマトンを用いてFollowersとFolloweesの関係をモデル化する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this theoretical article, a sociotechnical approach is proposed to characterize. First, the business ecosystem, focusing on the relationships among Providers, Enterprise, and Customers through SCM, ERP, and CRM platforms to align: (1) Business Intelligence (BI), Fuzzy Logic (FL), and TRIZ (Theory of Inventive Problem Solving), through the OID model, and (2) Knowledge Management (KM) and Imperfect Knowledge Management (IKM), through the OIDK model. Second, the article explores the E-GenAI business ecosystem, which integrates GenAI-based platforms for SCM, ERP, and CRM with GenAI-based platforms for BI, FL, TRIZ, KM, and IKM, to align Large Language Models (LLMs) through the E-GenAI (OID) model. Finally, to understand the dynamics of LLMs, we utilize finite automata to model the relationships between Followers and Followees. This facilitates the construction of LLMs that can identify specific characteristics of users on a social media platform.
- Abstract(参考訳): 本稿では,社会工学的アプローチを特徴付けるために提案する。
まず、ビジネスエコシステムは、(1)ビジネスインテリジェンス(BI)、Fuzzy Logic(FL)、TRIZ(発明問題解決理論)、(2)知識管理(KM)と不完全な知識管理(IKM)という、SCM、ERP、CRMプラットフォームを通じたプロバイダ、エンタープライズ、顧客間の関係に焦点を当てています。
第二に、この記事では、E-GenAIビジネスエコシステムについて紹介します。これは、SCM、ERP、CRMのGenAIベースのプラットフォームとBI、FL、TRIZ、KM、IKMのGenAIベースのプラットフォームを統合し、E-GenAI(OID)モデルを通してLLM(Large Language Models)を整列させます。
最後に, LLMの力学を理解するために, 有限オートマトンを用いてフォロワとフォロワの関係をモデル化する。
これにより、ソーシャルメディアプラットフォーム上のユーザの特定の特性を識別するLLMの構築が容易になる。
関連論文リスト
- Can We Trust AI Agents? An Experimental Study Towards Trustworthy LLM-Based Multi-Agent Systems for AI Ethics [10.084913433923566]
本研究では,信頼度向上技術が倫理的AI出力生成に与える影響について検討する。
我々はLLM-BMASのプロトタイプを設計し、エージェントは現実世界の倫理的AI問題に関する構造化された議論を行う。
議論では、バイアス検出、透明性、説明責任、ユーザの同意、コンプライアンス、公正性評価、EU AI Actコンプライアンスといった用語が明らかにされている。
論文 参考訳(メタデータ) (2024-10-25T20:17:59Z) - GenAgent: Build Collaborative AI Systems with Automated Workflow Generation -- Case Studies on ComfyUI [64.57616646552869]
本稿では、モデル、データソース、パイプラインを統合し、複雑で多様なタスクを解決するためにパフォーマンスを向上させるために使用される協調AIシステムについて検討する。
我々は、LLMベースのフレームワークであるGenAgentを紹介した。
その結果、GenAgentは実行レベルおよびタスクレベルの評価においてベースラインアプローチよりも優れていた。
論文 参考訳(メタデータ) (2024-09-02T17:44:10Z) - Large Language Models for Base Station Siting: Intelligent Deployment based on Prompt or Agent [62.16747639440893]
大規模言語モデル(LLM)とその関連技術は、特に迅速な工学とエージェント工学の領域において進歩している。
このアプローチは、人間の経験と知識をこれらの洗練されたLLMに注入するために、巧妙なプロンプトの戦略的利用を必要とする。
この統合は、サービスとしての人工知能(AI)と、より容易なAIの将来のパラダイムを表している。
論文 参考訳(メタデータ) (2024-08-07T08:43:32Z) - Towards Automated Solution Recipe Generation for Industrial Asset Management with LLM [4.771737213319029]
本研究では,Large Language Models(LLMs)の最近の進歩に条件ベースマネジメント(CBM)の原則を取り入れた,産業資産管理(IAM)への新たなアプローチを提案する。
論文 参考訳(メタデータ) (2024-07-26T01:24:52Z) - Converging Paradigms: The Synergy of Symbolic and Connectionist AI in LLM-Empowered Autonomous Agents [55.63497537202751]
コネクショニストと象徴的人工知能(AI)の収束を探求する記事
従来、コネクショナリストAIはニューラルネットワークにフォーカスし、シンボリックAIはシンボリック表現とロジックを強調していた。
大型言語モデル(LLM)の最近の進歩は、人間の言語をシンボルとして扱う際のコネクショナリストアーキテクチャの可能性を強調している。
論文 参考訳(メタデータ) (2024-07-11T14:00:53Z) - Agent Planning with World Knowledge Model [88.4897773735576]
エージェント計画を容易にするためにパラメトリック世界知識モデル(WKM)を導入する。
我々はWKMを開発し,グローバルプランニングと動的状態知識を指導し,地域プランニングを支援する。
本手法は, 各種の強靭なベースラインと比較して, 優れた性能が得られる。
論文 参考訳(メタデータ) (2024-05-23T06:03:19Z) - Hybrid LLM/Rule-based Approaches to Business Insights Generation from Structured Data [0.0]
広範囲で多様なデータセットから実行可能な洞察を抽出する能力は、情報的な意思決定と競合するエッジの維持に不可欠である。
従来のルールベースのシステムは信頼できるが、現代のビジネスデータの複雑さとダイナミズムに直面したとき、しばしば不足する。
本稿では,ルールベースシステムのロバスト性と大規模言語モデルの適応力を統合するハイブリッドアプローチの有効性について検討する。
論文 参考訳(メタデータ) (2024-04-24T02:42:24Z) - Generative AI and Process Systems Engineering: The Next Frontier [0.5937280131734116]
本稿では,大規模言語モデル (LLM) のような新しい生成人工知能(GenAI)モデルが,プロセスシステム工学 (PSE) におけるソリューション方法論をいかに拡張するかを考察する。
これらの最先端のGenAIモデル、特にファンデーションモデル(FM)は、広範な汎用データセットで事前トレーニングされている。
この記事では、マルチスケールモデリング、データ要件、評価指標とベンチマーク、信頼性と安全性など、PSE内でGenAIを完全に活用する上での潜在的な課題を特定し、議論する。
論文 参考訳(メタデータ) (2024-02-15T18:20:42Z) - Synergistic Integration of Large Language Models and Cognitive
Architectures for Robust AI: An Exploratory Analysis [12.9222727028798]
本稿では、知的行動を示す人工知能エージェントの開発に使用される2つのAIサブセクタの統合について考察する:大規模言語モデル(LLM)と認知アーキテクチャ(CA)である。
我々は3つの統合的アプローチを提案し、それぞれ理論モデルに基づいて、予備的な経験的証拠によって支持される。
これらのアプローチは、LSMとCAの長所を活用すると同時に、弱点を軽減し、より堅牢なAIシステムの開発を促進することを目的としている。
論文 参考訳(メタデータ) (2023-08-18T21:42:47Z) - OpenAGI: When LLM Meets Domain Experts [51.86179657467822]
ヒューマン・インテリジェンス(HI)は、複雑なタスクを解くための基本的なスキルの組み合わせに長けている。
この機能は人工知能(AI)にとって不可欠であり、包括的なAIエージェントに組み込まれるべきである。
マルチステップで現実的なタスクを解決するために設計されたオープンソースのプラットフォームであるOpenAGIを紹介します。
論文 参考訳(メタデータ) (2023-04-10T03:55:35Z) - Enabling Automated Machine Learning for Model-Driven AI Engineering [60.09869520679979]
モデル駆動型ソフトウェアエンジニアリングとモデル駆動型AIエンジニアリングを実現するための新しいアプローチを提案する。
特に、私たちはAutomated MLをサポートし、AI集約システムの開発において、AIの深い知識のないソフトウェアエンジニアを支援します。
論文 参考訳(メタデータ) (2022-03-06T10:12:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。